

Research on the Role Transformation and Practical Path of Kindergarten Art Teachers in the AI Era

Dong Lianhua¹, Lin Qingjia²

Universitas Pendidikan Ganesha, Bali

ABSTRACT

The rapid advancement of artificial intelligence (AI) has posed significant challenges to kindergarten art education. This study explores the inevitable transformation of kindergarten art teachers' roles and practical implementation strategies in the AI era. The paper analyzes the dilemmas faced by traditional teachers as "skill demonstrators" and "artwork evaluators" under AI's impact, while examining pathways for their transition from conventional roles to new professional identities. Grounded in teaching practices, it proposes an "AI-assisted, child-centered" approach. Through concrete case studies, the research elaborates on key implementation points and behavioral guidelines for each pathway, aiming to provide frontline educators with a systematic, actionable framework. This framework enables teachers to redefine their value within the AI wave, effectively harnessing technological empowerment to better nurture and stimulate children's creativity and aesthetic sensibilities.

Keywords: artificial intelligence, kindergarten art, kindergarten art teacher role, practical path, role transformation

INTRODUCTION

The wave of artificial intelligence (AI) is integrating into the social fabric with unprecedented breadth and depth, placing the field of education at the center of this transformative process. As the starting point of individual development, early childhood education faces profound reflections on the traditional roles of teachers while embracing the innovative possibilities brought by AI. Particularly in kindergarten art education—a domain emphasizing sensibility and creativity—the traditional skill-centered teaching methods are no longer sufficient to meet the demands of the AI era for children's innovation awareness, aesthetic perception, and interdisciplinary abilities.

This study aims to deeply analyze the intrinsic logic and external drivers behind the transformation of kindergarten art teachers' roles in the context of AI, examine the challenges involved, and explore concrete and feasible practical pathways. Through a comprehensive review and critical reflection on relevant literature, this research constructs a strategic framework to promote teacher development from multiple perspectives: the internalization of teachers' AI cognition and capabilities, the innovation of teaching philosophies and methods, the construction of professional growth communities, and the adherence to educational ethics and humanistic warmth.

We anticipate that this study will provide frontline kindergarten art teachers with a reference that

combines theoretical reflection and practical value, fostering the organic integration of AI technology and art education, and ultimately contributing to the cultivation of an innovative generation capable of harmoniously engaging with the future world.

We are currently in an era defined jointly by data, algorithms, and computing power, where artificial intelligence (AI) technology is transitioning from the periphery to the center, quietly reshaping all aspects of social life. The field of education is no exception (Huang et al., 2017). AI is no longer merely a disruptive force in industries such as manufacturing and healthcare; rather, as a dynamic interplay of culture and technology, it profoundly influences the transmission of knowledge, the occurrence of learning, and even the equity and quality of education (Wang et al., 2023). From intelligent teaching assistance systems to personalized learning path planning, AI is subtly transforming the educational landscape, injecting new variables into traditional teaching relationships, learning experiences, and management models (Huang et al., 2017). In early childhood education—the foundational stage for individual development—the potential applications of AI are gradually emerging. Whether through intelligent devices assisting teachers in detailed observation or providing learning content aligned with children's developmental stages, these innovations herald new educational possibilities (Huang et al., 2017).

However, this technological wave brings not only innovations in tools but also fundamental questions about the essence of education. When knowledge acquisition becomes unprecedentedly convenient, how should we cultivate children's abilities to adapt to the future? As intelligent technologies become increasingly widespread, how should we guide children to coexist harmoniously with technology and collaborate creatively? These questions have become shared challenges for the global education community. Kindergarten, as the first social environment children enter, makes every update in its educational philosophy and practice critically important. In response to the global demand for innovative talents and the ongoing impact of technology on future occupational ecosystems, early childhood education must take proactive measures to lay a solid foundation for children's long-term development.

Against this backdrop, the value of kindergarten art education becomes increasingly prominent. It concerns not only aesthetics and creativity but also represents an important journey for children to understand the world, express emotions, and shape personality (Bian, 2000). Traditional art classrooms often emphasize skill refinement and imitation of model works; however, in the AI era, this approach may obscure children's more precious innovative spirit and critical thinking (Bian, 2000). The emergence of AI painting tools, on the one hand, broadens the boundaries of artistic creation and brings unprecedented resources and interactive experiences to teaching [7, 11]; on the other hand, it prompts us to reconsider fundamental questions such as "What constitutes originality?" and "How should we evaluate it?" Therefore, how to genuinely integrate AI technology into kindergarten art education to stimulate rather than replace children's creativity has become a core issue that we must confront and resolve.

In today's era of increasingly diverse digital media, children's access to art has become multifaceted. The rise of AI-generated art compels us to reconsider the uniqueness of "human creativity" (Zhang & Zheng, 2024). The contemporary value of art education in kindergartens is no longer merely the transmission of painting skills; rather, it has been elevated to guiding children in establishing their own aesthetic coordinates through artistic exploration and expression, while developing problem-solving abilities and nuanced emotional language. However, the convenience brought by AI is accompanied by

challenges: on one hand, the widespread use of AI drawing tools may lead children to become dependent on technology-generated images, potentially blurring their understanding of the boundaries between "originality" and "imitation" (Zhang & Zheng, 2024); on the other hand, many teachers still lack sufficient understanding and application of AI technology, which directly restricts the deep integration of technology and education (Liu & Dong, 2019).

This situation calls not only for an update in teaching methods but also for a profound transformation in educational philosophy. What we need to cultivate are children who can collaborate with AI in the future while maintaining independent thinking and creative enthusiasm. Therefore, the focus of art education should be placed more on those human "soft skills" that AI finds difficult to reach: critical thinking, the ability to handle complex problems, creativity originating from within, emotional resonance, and cross-cultural understanding. When AI can easily generate perfect images, the unique human perspective, the clumsy yet sincere brushstrokes, and the stories and emotions embodied behind the works become increasingly precious. The transformation of the art teacher's role is precisely to protect and stimulate these human traits, guiding children to find and develop creativity that transcends algorithms through interaction with AI (Bian, 2000). This requires teachers to shift their vision from children's "painting skills" to their "growth," focusing on cultivating core competencies so that they can maintain their valuable curiosity and innovative spirit when facing future uncertainties. At the same time, teachers must also guide children to regard AI as a powerful "brush" or "partner," rather than an object of dependence, thereby upholding the most authentic humanistic core of artistic creation.

With the application of AI technology in educational settings, the role of teachers is undergoing a profound transformation from being "transmitters of knowledge" to "companions in learning" [15, 2]. In the specific context of kindergarten art education, this transformation is particularly concrete and urgent. Teachers need to evolve from the traditional skill demonstrators who teach hand-in-hand to becoming multifaceted educators capable of skillfully integrating AI tools, meticulously designing inquiry-based art activities, keenly capturing and stimulating children's intrinsic creative sparks, and engaging with children in discussions about the ethics of technology (Li & Feng, 2013).

This role transformation is not only an inevitable outcome of technological development but also an intrinsic requirement for teachers' professional growth (Liu & Dong, 2019). It demands that teachers reassess their position within the teaching process—not as the center stage performers, but as designers of learning environments, supporters on children's exploratory journeys, and bridges between technology and children. This implies that teachers must possess stronger curriculum conceptualization and design abilities, a more open mindset toward technology integration, and a broader interdisciplinary perspective to confidently meet the new expectations of education in the AI era. This is not a negation of the traditional value of teachers but rather an enrichment and expansion of their professional connotations within the new temporal framework. Ultimately, teachers will become the guides who ignite children's curiosity and accompany them as they step into the future world.

The core aim of this study is to thoroughly examine the intrinsic logic underlying the transformation of kindergarten art teachers' roles in the AI era, confront the practical challenges therein, and attempt to outline a clear and feasible practical blueprint. Specifically, we seek to: (1) analyze the opportunities and disruptions brought by AI technology to kindergarten art education, elucidating the necessity and urgency of the transformation of teachers' roles; (2) identify and dissect the multiple obstacles teachers may encounter during this transformation process, including those related to technology, ideology, resources, and ethics; (3) construct a systematic and implementable practical pathway to support

teachers in effectively addressing challenges and achieving self-transcendence, ultimately enabling AI to become a positive empowering force in art education.

At the theoretical level, this study aims to inject new perspectives into the interdisciplinary research field of “AI + Early Childhood Education” and “AI + Art Education,” providing a unique observational lens for constructing theories of teacher professional development in the AI era. At the practical level, we hope this research can serve as an “action guide” delivered directly to frontline kindergarten art teachers, assisting them in utilizing AI technology with greater composure and creativity, enhancing the warmth and depth of their teaching, and stimulating children’s innovative potential and aesthetic experience. In doing so, it aspires to contribute modestly to the modernization of early childhood education in China. Meanwhile, the study’s conclusions may offer valuable references for educational administrators in formulating teacher training programs and allocating resources, jointly fostering a supportive ecosystem for teacher innovation and development. Ultimately, we hope this research will accompany and empower every kindergarten art teacher to find certainty and direction in their professional growth amid an era of profound change, becoming warm and resolute practitioners leading the future of art education.

At the theoretical level, this study aims to inject new perspectives into the interdisciplinary research field of “AI + Early Childhood Education” and “AI + Art Education,” providing a unique observational lens for constructing theories of teacher professional development in the AI era. At the practical level, we hope this research can serve as an “action guide” delivered directly to frontline kindergarten art teachers, assisting them in utilizing AI technology with greater composure and creativity, enhancing the warmth and depth of their teaching, and stimulating children’s innovative potential and aesthetic experience. In doing so, it aspires to contribute modestly to the modernization of early childhood education in China. Meanwhile, the study’s conclusions may offer valuable references for educational administrators in formulating teacher training programs and allocating resources, jointly fostering a supportive ecosystem for teacher innovation and development. Ultimately, we hope this research will accompany and empower every kindergarten art teacher to find certainty and direction in their professional growth amid an era of profound change, becoming warm and resolute practitioners leading the future of art education.

THEORETICAL FRAMEWORK

Theoretical Foundations for the Role Transformation of Kindergarten Art Teachers in the AI Era (Expanded and Optimized Version). The integration of AI and education is by no means a simple technological overlay; it touches upon profound transformations in educational philosophy and teaching models. From a theoretical perspective, this integration provides solid theoretical support for the role transformation of kindergarten art teachers, mainly reflected in the following aspects:

Technology Empowerment Theory

The core of this theory is that AI, as an efficient intelligent tool, significantly enhances educational effectiveness and quality. Through automation and intelligent means, it liberates teachers from tedious repetitive tasks, allowing them to devote more energy to creative instructional design and personalized in-depth guidance (Huang et al., 2017). In art education, AI tools act as powerful assistants—for example, generating creative prompts, providing vast artistic resources, or conducting preliminary quantitative assessments of children’s artworks—greatly expanding teaching boundaries (Zhou & Li, 2022). This empowerment not only improves teaching efficiency but also stimulates teachers’ own

innovative potential, encouraging exploration of unprecedented teaching methods and artistic forms to open broader learning and creative spaces for children. Teachers can use AI to analyze children's creative data, accurately grasp their interests and learning difficulties, and achieve truly individualized instruction.

Digital Literacy Theory

Digital literacy theory emphasizes individuals' abilities to acquire, evaluate, use, create, and disseminate information in digital environments. For AI-era art teachers, digital literacy transcends mere tool operation to include critical understanding and ethical application of digital technologies (especially AI). Teachers must not only proficiently use AI tools to assist teaching but also identify limitations and potential biases in AI-generated content, guiding children to develop healthy digital habits (Mishra & Koehler, 2006). In art education, this means helping children understand AI art's generative mechanisms, distinguish between human and machine creations, and cultivate awareness of digital copyright and information security. Teachers' digital literacy is the cornerstone for ensuring AI plays a healthy, positive role in kindergarten art education.

Human-Machine Collaboration Theory

This theory emphasizes that in the AI era, humans and intelligent systems should establish a complementary, symbiotic relationship rather than compete. Teachers are no longer the sole knowledge authorities but become intelligent partners co-constructing learning environments with AI systems (Resnick, 2007). In art education, teachers can leverage AI's powerful data processing and image generation capabilities—such as analyzing children's drawing styles and preferences—while focusing on cultivating children's emotional expression, humanistic values, and critical thinking, achieving a perfect complementarity of human and machine strengths to promote children's holistic development (UNESCO, 2023). This collaborative model frees teachers from repetitive tasks like image recognition and color analysis, allowing more time for deep interaction and personalized guidance with children. The essence of human-machine collaboration lies in leveraging each party's unique advantages to create educational value beyond any single subject's capacity.

Personalized Learning Theory

One of AI's core advantages is providing highly customized learning content and immediate feedback based on each child's unique learning characteristics, interests, and developmental pace, achieving precise education. In art education, AI can deeply analyze children's creative data (e.g., drawing styles, color usage habits) and recommend the most suitable artworks or creative themes, effectively stimulating children's intrinsic motivation and creative potential (Mishra & Koehler, 2006). This personalization is reflected not only in content adaptation but also in dynamic adjustment of learning paths—AI can modify instruction difficulty and pace based on children's real-time performance, ensuring each child grows in the most appropriate environment. For kindergarten children with significant differences in developmental speed and interests, personalized learning maximizes potential activation.

Constructivist Learning Theory

Constructivism emphasizes that learners construct knowledge through active interaction with their environment. AI technology can provide children with rich, immersive interactive learning environments—such as virtual reality (VR) or augmented reality (AR) art creation platforms—enabling children to explore, discover, and create through hands-on practice, thereby gaining a deeper understanding of artistic concepts and skills (Mishra & Koehler, 2006). In this process, teachers' roles

transform into “scaffold builders and learning facilitators,” guiding children to use AI tools for autonomous inquiry. For example, AR technology allows children to “activate” their doodles for interaction in virtual spaces, greatly enhancing learning fun and engagement, and making children active knowledge constructors.

Sociocultural Theory

Sociocultural theory emphasizes that learning occurs through social interaction and cultural participation. AI tools can serve as media for children to interact with peers, teachers, and the broader cultural world. For instance, children can share works via AI platforms, receive feedback from peers and teachers across regions, or access diverse global artistic forms, broadening their artistic horizons. Teachers need to guide children in effective social interaction, cultivating their abilities in cooperation, sharing, and cross-cultural understanding, making AI a powerful tool to promote children’s social development and cultural comprehension.

Embodied Cognition Theory

This theory posits that cognitive processes are closely linked with bodily perception, movement, and environmental interaction—not occurring solely in the mind. In art education, the creative process is a highly embodied practice involving interaction among hands, eyes, body, and materials. AI technology—especially AR/VR and somatosensory interactive devices—offers new possibilities for embodied learning (Bian, 2000). For example, using somatosensory devices for virtual sculpture or painting allows children to experience art through full-body engagement. However, teachers must avoid over-reliance on virtual experiences, which might weaken children’s perception and interaction with real materials and the real world. Thus, teachers’ role is to balance virtual and real experiences, ensuring AI enhances rather than replaces children’s embodied interaction with the real world, thereby promoting their artistic cognitive development.

The Essence and Development Direction of Kindergarten Art Education

The essence of kindergarten art education lies in promoting children’s perceptual, emotional, cognitive, and social development through artistic activities, with the core being cultivation of aesthetic ability and creative expression. It far exceeds skill training, serving as an important pathway for children to understand the world, express themselves, and develop unique personalities (Bian, 2000). Art education’s true value is igniting children’s imagination and shaping their unique aesthetic taste and creative thinking—not mere imitation and replication. This essence dictates that art education must always adhere to the “child-centered” principle, respecting and protecting children’s nature and curiosity in any era.

Against the AI era’s backdrop, kindergarten art education’s development presents key trends, imposing new requirements on teachers’ roles:

Cross-Disciplinary Integration and Diverse Expression

Future art education will emphasize deeper integration with science, technology, engineering, and mathematics (STEAM). AI will act as a catalyst to expand artistic expression forms, such as digital painting, interactive installation art, and AI-assisted combinations of music and visual arts (Kewalramani et al., 2021). This integration cultivates children’s comprehensive literacy and problem-solving abilities—for example, creating artworks through simple AI programming commands allows children to learn basic logical thinking during artistic practice. Breaking traditional disciplinary barriers enables children to understand the world from a broader, more multidimensional perspective.

Immersive Experience and Contextual Creation

Leveraging immersive technologies like AR/VR, art education will provide children with immersive artistic experiences, allowing them to “enter” artworks and interact with virtual artistic contexts (Mishra & Koehler, 2006). For example, visiting virtual art museums worldwide via VR or projecting paintings into real environments via AR greatly enhances art learning’s interactivity and fun. Such immersive experiences not only improve children’s artistic perception but also stimulate their exploratory desire, making art learning vivid and lively.

Creative Autonomy and Individual Development

AI supports children in deeper autonomous exploration and creation based on their interests and abilities, with teachers’ roles shifting more toward guidance and support (Bian, 2000). AI can provide personalized learning paths and resource recommendations based on children’s creative data, ensuring each child learns art at the most suitable pace and manner. This highly autonomous learning model is crucial for cultivating children’s self-efficacy and independent thinking.

Ethical Reflection and Humanistic Adherence

While enjoying AI’s convenience, art education must emphasize AI ethics education for children, guiding them to establish correct views on AI and uphold art’s humanistic essence and originality (UNESCO, 2023). This includes reflecting on AI-created copyrights, aesthetic values, and the irreplaceability of human creativity. Teachers need to help children understand that human emotions, thoughts, and culture endow artworks with life and meaning. Thus, art education should guide children—with AI assistance—to focus more on self-expression and humanistic care, cultivating their critical thinking and moral judgment.

Process Documentation and Multidimensional Evaluation

AI can accurately record children’s creative processes and data, making art education evaluation focus not only on final products but also on children’s thinking, exploration, and growth trajectories during creation. AI-assisted evaluation systems provide more objective, multidimensional feedback, helping teachers comprehensively understand children’s developmental status (Huang et al., 2017). However, such data analysis should be an aid—final evaluation still requires teachers to consider children’s emotional expression and creative intentions, emphasizing respect for their creative thinking and unique expression.

New Connotations of Teacher Professional Development Theory

Teacher professional development is a continuous, dynamic process of self-transcendence. In the AI era, traditional professional development theories acquire new connotations:

Lifelong Learning Theory

AI’s rapid iteration requires teachers to view knowledge updating as a norm. Teachers should maintain a mindset of continuous learning of AI knowledge and application skills (Liu & Dong, 2019), including not only AI tool operation but also deep reflection on AI’s educational philosophy and ethical issues. Actively participating in trainings and seminars, teachers internalize lifelong learning as a professional habit.

Reflective Practice Theory

This theory encourages teachers to engage in critical reflection during teaching practice. In AI-assisted teaching, teachers need to reflect on AI tools’ effectiveness and how to integrate AI into teaching to maximize children’s development (Zhang & Zheng, 2024). Such reflection targets not only teaching outcomes but also AI tools’ limitations and potential risks. Through continuous reflection, teachers optimize AI application strategies in art education.

Professional Learning Community Theory

This theory emphasizes that teachers collaboratively solve problems and improve abilities through cooperation, communication, and sharing. In the AI era, teachers can explore AI applications in art education via online platforms or interdisciplinary seminars, share experiences, and form collective wisdom (Liu & Dong, 2019). These communities provide emotional support, promote knowledge sharing and skill enhancement, and help teachers avoid isolation when facing new technological challenges.

Teacher Efficacy Theory

Teacher efficacy refers to teachers' belief in their ability to influence student learning and development. In the AI era, teachers need to build confidence in effective teaching with AI assistance (Eckhoff, 2017). Enhancing teachers' AI literacy and application ability strengthens their teaching efficacy in the AI context—when teachers master new technologies and observe positive outcomes, their teaching enthusiasm and professional confidence significantly increase.

Transformative Learning Theory

This theory holds that adult learners change their original cognitive frameworks through critical reflection on experiences and assumptions. In the AI era, teachers need to undergo transformative learning by revising traditional educational concepts and teaching methods, accepting AI as a new educational partner, and actively exploring its innovative applications in art education. This deep conceptual transformation is key to successful teacher role transition.

Reshaping Teacher Competencies under Core Literacy Orientation

Under the core literacy-oriented educational background, the AI era imposes higher demands on kindergarten art teachers beyond traditional disciplinary knowledge and teaching skills (Bian, 2000):

AI Literacy and Digital Ethics Competency

Teachers need to understand AI's basic principles and application scenarios, and be proficient in AI-assisted creation, teaching management, and assessment tools (Zhou & Li, 2022). More importantly, they should organically integrate AI with art education goals, ensuring it serves children's holistic development rather than mere technology stacking. Simultaneously, teachers must have digital ethics and security awareness, guiding children to engage in responsible artistic creation and communication in digital environments.

Innovative Thinking and Interdisciplinary Curriculum Design Ability

Teachers should design innovative, inquiry-based art curricula and activities using AI to stimulate children's creativity (UNESCO, 2023). This requires not only artistic creativity but also combining creativity with AI—such as designing interdisciplinary activities like "AI + Nature Exploration" or "AI + Story Creation."

Critical Thinking and Aesthetic Judgment Ability

Teachers need to guide children to critically view AI, understand its limitations, and cultivate ethical awareness and originality in artistic creation (UNESCO, 2023). They should help children comprehend differences between AI-generated and human-created artworks, fostering independent aesthetic judgment and a sense of responsibility.

Embodied Practice and Interdisciplinary Integration Ability

Teachers should integrate art education with science, technology, and other fields to cultivate children's comprehensive problem-solving skills (Kewalramani et al., 2021). Especially in the AI era, teachers need to design activities ensuring children still construct artistic cognition through bodily

perception and practice amid virtual-real alternations—such as transforming virtual designs into actual handicrafts.

Emotional Resonance and Humanistic Care Ability

Despite AI's power, teachers' roles in emotional communication, stimulating children's interest, and providing humanistic care are irreplaceable (Resnick, 2007). Teachers need to pay more attention to children's psychological development and emotional needs, becoming warm-hearted educators.

Continuous Learning and Self-Renewal Ability

Facing AI's rapid development, teachers must possess continuous learning and self-renewal abilities to adapt to new educational environments and technological challenges (Eckhoff, 2017).

In summary, kindergarten art teachers' role transformation in the AI era is a multidimensional, profound systemic project, requiring comprehensive enhancement in technology, philosophy, practice, and literacy to meet future educational development demands. These theoretical foundations provide solid support for constructing subsequent practical pathways.

METHOD

This study adopts a comprehensive research methodology combining theoretical analysis with practical case studies to explore the role transformation of kindergarten art teachers in the AI era. The research design incorporates multiple approaches to ensure both theoretical depth and practical relevance.

Research Design and Approach

The study employs a qualitative research approach with emphasis on theoretical construction and practical pathway exploration. Given the conceptual nature of the research topic, this section is framed as an Analytical Framework rather than a traditional method section. The research follows a systematic process of literature review, theoretical analysis, and case study integration to develop comprehensive understanding of the transformation process.

Data Sources and Collection Methods

Data were collected from multiple sources to ensure comprehensive coverage of the research topic. Primary data sources include: (1) Extensive academic literature review covering AI in education, early childhood education theories, and art education methodologies; (2) Document analysis of kindergarten art education practices and AI integration cases; (3) Systematic observation of art teaching activities in kindergarten settings; (4) Analysis of existing case studies on AI applications in early childhood art education. The data collection process focused on identifying patterns, challenges, and successful practices in teacher role transformation.

Analytical Framework and Procedures

The analysis followed a structured framework consisting of four main phases: First, identification and analysis of core issues in teacher role transformation under AI impact, focusing on both challenges and opportunities. Second, systematic examination of the theoretical foundations supporting role transformation, including technology empowerment theories and educational philosophy updates. Third, detailed analysis of practical cases to extract effective implementation strategies and identify common obstacles. Fourth, integration of theoretical perspectives with practical experiences to construct comprehensive implementation pathways. The analytical process emphasized iterative refinement of concepts and continuous validation against both theoretical frameworks and practical observations.

Case Study Methodology

The research incorporates an in-depth case study of Teacher Dong Lianhua's "Gourd' Imaginative Ideas · Intelligent Fun with Nature" outdoor sketching activity. This case was selected as it represents a comprehensive example of AI integration in kindergarten art education. The case analysis examines: (1) Design philosophy and implementation process; (2) AI tool integration strategies; (3) Teacher role transformation manifestations; (4) Children's learning outcomes and feedback; (5) Challenges and solutions in practical implementation. The case study provides concrete examples of the theoretical concepts discussed and offers practical insights for implementation.

FINDINGS AND DISCUSSION

1. The Necessity and Urgency of Teacher Role Transformation

The research findings clearly demonstrate that AI technology is fundamentally reshaping the kindergarten art education ecosystem. Traditional teacher roles as "skill demonstrators" and "knowledge transmitters" are being challenged by AI's capabilities in generating artistic content, providing instant feedback, and offering personalized learning paths. However, this technological disruption does not diminish teacher value but rather necessitates evolution toward more creative, guiding, and supportive roles. The transformation from "transmitters of knowledge" to "learning facilitators" and "creativity stimulators" has become an inevitable trend in educational development.

The study identifies several critical factors driving this transformation: First, the changing nature of knowledge acquisition in the AI era requires teachers to focus more on cultivating children's critical thinking and creative abilities rather than mere skill transmission. Second, AI tools' capabilities in handling routine tasks free teachers to concentrate on higher-value educational activities such as emotional guidance and individualized support. Third, the integration of AI technology demands new teacher competencies including digital literacy, ethical awareness, and technological application skills. These factors collectively create both the necessity and opportunity for profound role transformation.

2. Practical Pathways for Role Transformation

Through comprehensive analysis of teaching practices and theoretical frameworks, the research identifies four key dimensions for teacher role transformation, each with specific implementation strategies:

a. Enhancing AI Literacy and Technical Proficiency

Systematic professional development emerges as crucial for building teachers' AI capabilities. The research emphasizes the importance of targeted "AI + Art Education" training programs that cover not only technical skills but also critical understanding of AI applications. Teachers need to develop competencies in several areas: operational skills for AI tools like painting generators and AR/VR platforms; data analysis capabilities for interpreting children's creative patterns; and ethical awareness for responsible technology use. The findings suggest that successful training programs combine theoretical knowledge with hands-on practice, enabling teachers to transition from passive technology recipients to active, innovative users.

b. Innovating Teaching Concepts and Methods

The research reveals that effective AI integration requires fundamental shifts in teaching philosophy. Teachers need to move from "skill-centered" to "child development-centered" approaches, designing personalized, immersive, and interdisciplinary art activities. Specific strategies include: using AI to generate diverse creative stimuli while maintaining children's central role in artistic expression; leveraging AR/VR technologies to create engaging learning environments; and designing STEAM-

integrated activities that connect art with other disciplines. The findings emphasize that technology should enhance rather than replace authentic artistic experiences, with teachers serving as guides in children's creative journeys rather than technical instructors.

c. Building Professional Learning Communities

The study highlights the importance of collaborative support systems for sustainable teacher development. Effective approaches include: establishing kindergarten-based research mechanisms for regular peer learning and experience sharing; creating cross-institutional communication platforms for broader perspective exchange; and developing online learning communities for continuous knowledge updating. The research finds that teachers who participate in professional communities demonstrate higher confidence and competence in AI integration, benefiting from collective wisdom and emotional support when facing technological challenges.

d. Emphasizing Ethics and Humanistic Care

A significant finding concerns the essential role of ethical considerations and humanistic values in AI-integrated art education. Teachers must balance technological applications with fundamental educational principles by: guiding children to understand AI's capabilities and limitations; protecting children's privacy and data security; maintaining emphasis on emotional expression and cultural identity in artistic creation; and cultivating critical awareness about AI-generated content. The research underscores that while AI can enhance technical aspects of art education, the human elements of creativity, emotion, and cultural understanding remain irreplaceable and must be prioritized.

3. Case Study Analysis: Outdoor Sketching with AI Integration

This case originates from a large-class art activity lesson plan titled “‘Gourd’ Imaginative Ideas · Intelligent Fun with Nature” — Outdoor Fun Sketching, designed by Teacher Hao Ruiping from Runxin Kindergarten, Licheng District, Jinan City.

The detailed case study of Teacher Hao's “‘Gourd’ Imaginative Ideas · Intelligent Fun with Nature” activity provides concrete examples of successful role transformation. Key findings from the case analysis include:

Design Innovation and Implementation Effectiveness

The case demonstrates how traditional outdoor sketching can be enhanced through thoughtful AI integration. By situating the art activity in a natural environment and using AI language assistants to answer children's spontaneous questions, the teacher successfully connected artistic observation with scientific inquiry. The AI tools served as "instant knowledge supplements," addressing children's curiosity about natural phenomena while maintaining focus on artistic expression. This approach represents a significant advancement over traditional art education methods that often separate artistic skill development from conceptual understanding.

Teacher Role Transformation in Practice

The case clearly illustrates the teacher's evolution from skill demonstrator to learning environment designer, AI tool integrator, and creativity stimulator. Rather than being the primary source of information, the teacher curated learning experiences, selected appropriate technological tools, and facilitated children's exploration processes. This transformation allowed more focused attention on individual children's creative processes and emotional needs, demonstrating how AI can enhance rather than replace teacher's educational roles.

Children's Learning Outcomes

Analysis of children's artworks and engagement patterns revealed several positive outcomes:

enhanced observational skills through multi-sensory experiences; deeper conceptual understanding through immediate AI-supported explanations; increased creative confidence through technology-assisted expression; and improved interdisciplinary connections between art, science, and language. The case provides evidence that well-integrated AI applications can enrich rather than diminish authentic artistic learning experiences.

Implementation Challenges and Solutions

The case also identified practical challenges including: ensuring age-appropriate AI tool usage; maintaining balance between virtual and real-world experiences; addressing privacy concerns with children's data; and developing effective assessment methods for AI-enhanced activities. The solutions developed through this case—such as careful tool selection, clear communication with parents, and balanced activity design—offer valuable guidance for similar implementations.

4. Integration of Theoretical and Practical Perspectives

The research findings strongly support the theoretical frameworks discussed earlier, while also providing practical refinements. The technology empowerment theory is validated through successful cases of AI enhancing teaching efficiency and effectiveness. Constructivist principles are embodied in children's active engagement with AI-supported learning environments. Human-machine collaboration theory is demonstrated through effective teacher-AI partnerships in facilitating learning. However, the research also identifies the need to adapt these theories to the specific context of early childhood art education, particularly regarding developmental appropriateness and the preservation of humanistic values.

The discussion emphasizes that successful role transformation requires simultaneous attention to multiple dimensions: technological competence must be paired with philosophical understanding; practical skills need theoretical guidance; and individual development requires community support. The findings suggest that the most effective approaches integrate technological innovation with enduring educational principles, using AI as a tool to enhance rather than replace essential human aspects of art education.

CONCLUSION

This study thoroughly explores the necessity, challenges, and practical pathways of kindergarten art teachers' role transformation in the AI era. The research reveals that AI technology is fundamentally reshaping kindergarten art education, creating both unprecedented opportunities and significant challenges. The transformation from traditional "knowledge transmitters" to contemporary "learning facilitators," "creativity stimulators," and "intelligent educators" represents not merely a technical adjustment but a comprehensive evolution of teachers' professional identity and educational philosophy. The core conclusions regarding teacher role transformation include several essential elements. First, the development of AI literacy and technical proficiency forms the foundation for effective technology integration, requiring teachers to master both operational skills and a critical understanding of AI applications. Second, the innovation of teaching concepts and methods must shift from skill-centered instruction to child development-focused approaches that leverage AI's capabilities for personalization and engagement. Third, the establishment of supportive professional communities provides crucial collaborative environments for teacher growth and knowledge sharing. Fourth, maintaining emphasis on ethics and humanistic care ensures that technological advancement enhances rather than undermines fundamental educational values and children's holistic development.

The research demonstrates that successful role transformation requires balanced attention to all these dimensions simultaneously. Teachers who focus solely on technical skills without corresponding philosophical growth may misuse technology, while those who emphasize theory without practical competence may fail to implement effective changes. The most successful transformations occur when teachers develop comprehensive capabilities across technological, pedagogical, and ethical domains.

Despite providing comprehensive analysis, this study has several limitations that suggest directions for future research. The primary limitation involves the reliance on theoretical analysis and selected case studies rather than large-scale empirical data. Future research should conduct broader surveys and interviews across different regions and kindergarten types to validate and extend these findings. Additionally, more investigation is needed concerning the age-appropriateness and effectiveness of specific AI tools for young children, including longitudinal studies of learning outcomes.

Several promising research directions emerge from this study. Large-scale empirical research could provide stronger evidence for the generalizability of the proposed frameworks. Action research projects implementing and refining the suggested pathways in diverse educational contexts would offer valuable practical insights. Comparative international studies examining different cultural approaches to AI integration in early childhood art education could identify innovative practices and cultural considerations. Further exploration of the relationship between AI technologies and embodied cognition theory could enhance understanding of how to balance virtual and physical artistic experiences. Research on AI ethics specific to early childhood contexts would address important questions about privacy, bias, and appropriate technology use with young children.

The findings offer significant implications for educational practice and policy development. For frontline teachers, the study provides a comprehensive framework for navigating role transformation, emphasizing that technological competence must be integrated with pedagogical innovation and ethical consideration. Teachers should approach AI integration as an opportunity to enhance their professional capabilities rather than as a threat to their traditional roles.

For educational administrators and policy makers, the research suggests several important initiatives. Developing systematic "AI + Art Education" training programs that combine technical skills with pedagogical understanding is essential. Establishing professional learning communities and exchange platforms can support teachers' collaborative growth. Allocating resources for appropriate AI tools and technical support, particularly in underdeveloped regions, is crucial for equitable implementation. Creating guidelines and standards for ethical AI use in early childhood education can help ensure responsible technology integration.

The research ultimately emphasizes that the goal of role transformation is not merely to adapt to technological changes but to enhance educational quality and better support children's holistic development. By embracing thoughtful AI integration while maintaining commitment to fundamental educational values, kindergarten art teachers can transform challenges into opportunities, creating more engaging, effective, and meaningful art education experiences that prepare children for a future where human creativity and technological innovation coexist and complement each other.

REFERENCES

Bian, X. (2000). Children's art and art education. Jiangsu Education Press.

Che, Z., Yang, J., & Wu, L. (2023). Promoting teachers' digital literacy achievement: A nationwide survey of education informatization in China. *Journal of Education Research*.

Eckhoff, A. (2017). The role of the early childhood teacher in the visual arts: A review of the literature.

Early Childhood Education Journal, 45(5), 561-569.

Huang, R. H., Liu, D. J., Xu, J. J., & Fan, L. (2017). The application status and development trend of artificial intelligence in education. Journal of East China Normal University (Educational Sciences Edition), 35(5), 1-11.

Kewalramani, S., Palaiologou, I., & Arnott, L. (2021). Using a 'Maker' approach to foster children's creativity in STEM and digital technologies in early childhood education. Journal of Research in Childhood Education, 35(3), 379-396.

Li, J. M., & Feng, X. X. (2013). Interpretation of the Guidelines for Children's Learning and Development Aged 3-6. People's Education Press.

Liu, X. Y., & Dong, Y. (2019). Research on the role transformation of kindergarten teachers supported by information technology. China Educational Technology, (8), 120-126.

Mishra, P., & Koehler, M. J. (2006). Technological Pedagogical Content Knowledge: A Framework for Teacher Knowledge. Teachers College Record, 108(6), 1017-1054.

Resnick, M. (2007). Sowing the Seeds for a More Creative Society. Learning & Leading with Technology, 35(4), 18-22.

UNESCO. (2023). Guidance for generative AI in education and research. United Nations Educational, Scientific and Cultural Organization.

Wang, Y. M., Wang, D., Liang, W. Y., & Liu, C. (2023). "AI +" education: From AI empowerment to human-machine collaboration—Prospects and challenges of AIGC educational applications. Journal of East China Normal University (Educational Sciences Edition), 41(3), 25-35.

Zhang, J., & Zheng, X. D. (2024). Educational transformation under the impact of AIGC: Logical path and practical approach. Modern Distance Education Research, 36(1), 1-10.

Zhou, Y., & Li, G. (2022). The Application of Artificial Intelligence in Early Childhood Education: A Review of the Literature. Journal of Educational Technology Development and Exchange, 15(1), 1-15.