

The Potential of Virtual Reality (VR) and Augmented Reality (AR) in Promoting Sustainable Education and Enhancing Public Awareness

Dong Ruixu^{1*}, Dong Lianhua²

^{1,2}Universitas Pendidikan Ganesha, Bali

*Corresponding Author: 1307281523@qq.com

ABSTRACT

This paper explores the transformative potential of Virtual Reality (VR) and Augmented Reality (AR) in advancing sustainable education and heightening public awareness of critical environmental issues. As the global community grapples with the urgent need to achieve the United Nations Sustainable Development Goals (SDGs), innovative educational tools are paramount. VR and AR technologies offer immersive, interactive, and engaging learning experiences that can significantly enhance the understanding and retention of complex sustainability concepts. This paper synthesizes existing research to examine the effectiveness of these immersive technologies in various educational contexts, from formal classroom settings to public awareness campaigns. We review several case studies that demonstrate the power of VR and AR to foster pro-environmental attitudes, promote behavioral change, and increase engagement with sustainability topics such as climate change, biodiversity loss, and resource conservation. The analysis reveals that by creating a sense of presence and emotional connection, VR and AR can bridge the psychological distance to environmental problems, making them more tangible and relatable. Furthermore, the paper discusses the alignment of these technologies with SDG 4 (Quality Education) and their contributions to other SDGs by fostering a generation of environmentally conscious and responsible citizens. Finally, we identify the current challenges, including accessibility, cost, and the need for standardized pedagogical frameworks, and propose future research directions to fully harness the potential of VR and AR for a sustainable future. The findings suggest that the strategic integration of immersive technologies into educational strategies can be a powerful catalyst for achieving global sustainability targets.

Keywords: Augmented Reality, Environmental Education, Sustainable Development Goals, Sustainability, Virtual Reality.

INTRODUCTION

The dawn of the 21st century has been characterized by a series of profound and interconnected environmental crises that threaten the stability of planetary systems and the well-being of human societies. The escalating climate crisis, evidenced by rising global temperatures, extreme weather events, and sea-level rise, represents an existential threat that demands immediate and decisive action. Concurrently, the world is facing unprecedented rates of biodiversity loss, depletion of natural resources, and widespread pollution of air, water, and soil. These challenges are not isolated; they are systemic,

complex, and deeply rooted in prevailing patterns of production, consumption, and governance. In response to this global predicament, the international community adopted the 2030 Agenda for Sustainable Development, with the 17 Sustainable Development Goals (SDGs) at its core. The SDGs provide a comprehensive and ambitious framework for a global transformation towards a more sustainable, equitable, and prosperous future for all [1].

A fundamental prerequisite for achieving the SDGs is a profound and widespread shift in human consciousness, values, and behaviors. This transformation hinges on the power of education to foster a deep understanding of sustainability challenges, cultivate a sense of global citizenship, and empower individuals with the knowledge, skills, and motivation to become agents of change. However, traditional educational paradigms, often characterized by passive learning, disciplinary silos, and a disconnect from real-world contexts, have proven insufficient in addressing the complexity and urgency of the sustainability crisis. As Kollmuss and Agyeman (2002) argued, there is a significant "gap" between environmental knowledge and pro-environmental behavior, suggesting that simply providing information is not enough to inspire meaningful action [1].

In this context, the rapid advancements in digital technologies offer unprecedented opportunities to reimagine and revolutionize education for sustainability. Among the most promising of these innovations are Virtual Reality (VR) and Augmented Reality (AR). VR technology immerses users in completely simulated, three-dimensional environments, creating a powerful sense of presence and allowing for interaction with virtual objects and scenarios. AR, in contrast, overlays computer-generated information, images, and interactive elements onto the user's real-world view, enriching their perception and understanding of their immediate surroundings. Once relegated to the domains of gaming and entertainment, these immersive technologies are now being increasingly recognized for their transformative pedagogical potential across a wide range of disciplines [2, 3].

This paper posits that VR and AR represent a paradigm shift in the field of sustainable education and public awareness. By offering visceral, first-person, and emotionally resonant experiences, these technologies can make abstract and distant environmental problems feel immediate, personal, and urgent. Imagine a student not just reading about deforestation but virtually standing in the Amazon rainforest, hearing the sounds of the ecosystem, and witnessing the impact of logging in real-time. Consider a citizen not just being told about their carbon footprint but using an AR app to visualize the emissions associated with their daily choices. As a growing body of research suggests, these kinds of experiential and embodied learning opportunities can be significantly more effective at fostering deep understanding, empathy, and behavioral change than traditional, more passive methods [4].

This paper undertakes a systematic review of the burgeoning literature on the application of VR and AR in sustainability-focused education and public engagement initiatives. The central research question guiding this inquiry is: *How can VR and AR technologies be effectively leveraged to promote sustainable education and enhance public awareness in alignment with the UN Sustainable Development Goals?* To answer this question, we will explore the multifaceted ways in which these technologies can be used to:

- 1 Deepen Cognitive Understanding: Facilitate the comprehension of complex, dynamic, and often invisible ecological systems and processes.
- 2 Cultivate Affective Engagement: Foster empathy, a sense of connection to nature, and a stronger ethical commitment to environmental stewardship.

- 3 Catalyze Behavioral Transformation: Encourage the adoption and maintenance of sustainable practices and lifestyles in individuals and communities.
- 4 Advance the 2030 Agenda: Contribute directly to the achievement of SDG 4 (Quality Education) and indirectly to a host of other SDGs by fostering a well-informed and motivated global citizenry.

Through a critical synthesis of key theoretical frameworks, empirical studies, and practical case examples, this paper aims to provide a comprehensive and nuanced overview of the current state of the art. We will identify emerging best practices for the design and implementation of immersive learning experiences for sustainability, while also critically examining the challenges and limitations that must

be addressed to realize the full potential of these technologies. Ultimately, this paper seeks to build a robust and compelling case for the strategic integration of VR and AR into the mainstream of educational policy and practice, positioning them as indispensable tools in the collective global effort to build a more sustainable and just world for present and future generations.

LITERATURE REVIEW

The intersection of immersive technologies and sustainable education is a burgeoning field of academic inquiry, characterized by rapid innovation and a growing body of empirical evidence. This review synthesizes the key theoretical frameworks that underpin the educational efficacy of VR and AR, examines the empirical evidence supporting their role in fostering pro-environmental attitudes and behaviors, and situates these applications within the broader context of the UN Sustainable Development Goals. A systematic approach was taken to identify and analyze relevant literature, drawing from multiple disciplines to provide a comprehensive overview.

Theoretical Foundations of Immersive Sustainable Learning

The power of VR and AR in education is not merely a function of their novelty; it is rooted in established theories of learning and cognition. Several theoretical frameworks help to explain why immersive experiences can be so effective for sustainability education.

Constructivism and Experiential Learning: At its core, immersive learning aligns with constructivist theories, which posit that learners actively construct their own knowledge and understanding through experience and interaction with their environment. VR and AR provide rich, interactive "microworlds" where learners can engage in experiential learning, as theorized by Dewey and Kolb. By doing, exploring, and discovering within a simulated environment, learners move beyond the passive reception of information to a deeper, more integrated form of knowledge construction. For example, a VR simulation that allows students to manage a virtual forest, making decisions about logging and conservation and seeing the long-term ecological and economic consequences, is a powerful application of experiential learning principles.

Embodied Cognition and Presence: The theory of embodied cognition suggests that our cognitive processes are deeply intertwined with our physical bodies and our interactions with the world. VR and AR leverage this by creating a sense of presence, the subjective feeling of "being there" in a virtual environment (Slater, 2009). This sense of presence allows for embodied learning, where abstract concepts are understood through physical interaction and spatial awareness. When a user physically walks around a virtual wind turbine to understand its scale or uses their hands to assemble a virtual solar panel, the learning becomes embodied and more memorable. This physical engagement can lead to a more intuitive grasp of complex systems and a stronger personal connection to the subject matter (Riva, Wiederhold, & Mantovani, 2019).

Transformative Learning and Perspective-Taking: Sustainability education often aims for transformative learning, which involves a fundamental shift in an individual's worldview, assumptions, and frames of reference. VR is uniquely capable of facilitating this by enabling powerful perspective-taking experiences. By embodying an avatar of a different person (e.g., a climate refugee) or even a non-human entity (e.g., a sea turtle navigating a polluted ocean), users can develop a profound sense of empathy and a new perspective on environmental issues. This ability to "walk in another's shoes" can challenge existing beliefs and foster the deep, transformative insights that are necessary for meaningful environmental action.

Psychological Distance: A significant barrier to environmental engagement is the concept of psychological distance, where issues like climate change are perceived as abstract, uncertain, and distant in time and space (Spence, Poortinga, & Pidgeon, 2012). VR and AR directly counter this by making distant issues immediate and personal. A user can be transported to a melting glacier or a flooded coastal city, transforming an abstract headline into a visceral, emotionally resonant experience. By reducing psychological distance, immersive technologies can increase the perceived urgency and importance of environmental problems, thereby motivating action.

Empirical Evidence and Key Research Findings

A growing body of empirical research provides strong support for the theoretical potential of VR and AR in sustainable education. These studies, employing a range of methodologies from controlled experiments to field studies, have consistently demonstrated the positive impact of immersive technologies on cognitive, affective, and behavioral outcomes. The table below summarizes key studies that exemplify the research in this area.

Table 1. Key Studies That Exemplify the Research

Study (Author, Year)	Technology	Focus Area	Methodology	Key Findings
Nelson, Anggraini, & Schlüter (2020)	360° VR	Marine Conservation	Field Experiment (n=1006)	VR experience, especially with negative framing, significantly increased donation amounts to a conservation charity compared to 2D video and control groups.
Kleinlogel et al. (2023)	Immersive VR	Energy Saving	Lab Experiment	VR intervention led to greater energy-saving attitudes and behavioral strategies compared to print or video. Use of a personalized "doppelganger" avatar showed potential for enhanced effects.
Markowitz et al. (2018)	Immersive VR	Ocean Acidification	Lab Experiment	VR field trip resulted in significant learning gains and more positive pro-environmental attitudes compared to a non-immersive video version.
Ladykova et al. (2024)	AR	Environmental Education	Systematic Review (20 articles)	Found that AR in environmental education, mostly with primary school students, contributed to learning, affective outcomes, and

Hariyani, Singh, & Kumar (2025)	VR/AR	SDGs & Review Paper Climate Action	interaction. Highlighted a need for more research on implementation challenges. Argues for leveraging VR and AR for immersive campaigns to promote sustainability literacy and climate action as a key strategy for achieving the SDGs.
---------------------------------	-------	---------------------------------------	--

These studies collectively illustrate a clear trend: immersion matters. The ability of VR and AR to create a sense of presence, evoke emotion, and enable interaction consistently leads to better outcomes than more traditional, non-immersive media. The findings from Nelson et al. (2020) are particularly noteworthy, as they provide concrete evidence of VR influencing real-world financial behavior in a pro-environmental context. Similarly, the work of Kleinlogel et al. (2023) demonstrates the potential of VR as a tool for changing ingrained household habits, a critical component of a broader societal shift towards sustainability.

Despite the overwhelmingly positive findings, the literature also highlights several challenges and research gaps that need to be addressed. The systematic review by Ladykova et al. (2024) points out that most studies have focused on short-term outcomes, and there is a lack of longitudinal research examining the long-term retention of knowledge and the persistence of behavioral changes. Furthermore, much of the research has been conducted in controlled laboratory settings, and more field research is needed to understand how these technologies perform in real-world educational contexts, such as classrooms and museums.

Another significant gap is the relative lack of research on the application of AR for sustainability education compared to VR. While AR holds great promise for situated learning—for example, by overlaying information about local flora and fauna during a nature walk—its potential has not been as extensively explored as that of VR. Finally, issues of accessibility, equity, and the "digital divide" are critical considerations. The high cost of hardware and the technical expertise required for content creation can limit the availability of these powerful educational tools, potentially exacerbating existing educational inequalities. Future research and development must prioritize the creation of scalable, affordable, and user-friendly immersive learning solutions.

METHOD

To construct a comprehensive and rigorous analysis of the role of VR and AR in sustainable education, this paper adopts a systematic literature review methodology. This approach is particularly well-suited for synthesizing research from a diverse and rapidly evolving interdisciplinary field, allowing for the identification of consistent findings, theoretical trends, and critical gaps in the existing knowledge base. The review was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines where applicable, ensuring a transparent and replicable process from search to synthesis.

Research Questions

The systematic review was guided by a primary research question and several secondary questions. The primary research question focuses on how Virtual Reality (VR) and Augmented Reality (AR) technologies can be effectively leveraged to promote sustainable education and enhance public

awareness in alignment with the United Nations Sustainable Development Goals. To support this inquiry, the secondary research questions examine the key theoretical frameworks that explain the effectiveness of VR and AR in sustainability learning contexts, assess the existing empirical evidence regarding their impact on cognitive, affective, and behavioral outcomes related to sustainability, and identify the main challenges, limitations, and ethical considerations associated with the use of VR and AR in sustainable education.

Search Strategy and Data Sources

A multi-stage search strategy was implemented to ensure a comprehensive retrieval of relevant literature. The search was conducted in May 2025.

Databases: A systematic search was performed across four major electronic academic databases renowned for their extensive coverage of scientific and social scientific literature: Scopus, Web of Science, ScienceDirect, and Google Scholar. This multi-database approach was chosen to minimize publication bias and capture a wide array of perspectives from computer science, education, environmental science, psychology, and communication studies.

Search Terms: The search query was constructed using three conceptual blocks of keywords, combined using Boolean operators (AND/OR). The keywords were chosen to be broad enough to capture the full scope of the field while remaining focused on the core research questions.

- 1 Concept Block 1 (Technology): ("Virtual Reality" OR VR OR "Augmented Reality" OR AR OR "Immersive Technolog*" OR "Extended Reality" OR XR)
- 2 Concept Block 2 (Sustainability): (Sustainab* OR Environment* OR Ecolog* OR "Climate Change" OR Conservation OR "Pro-environmental")
- 3 Concept Block 3 (Education/Awareness): (Educat* OR Learn* OR Train* OR Aware* OR Engagement OR Pedagog* OR "Public Understanding")

The search string (Block 1) AND (Block 2) AND (Block 3) was adapted for the syntax of each database. The search was limited to peer-reviewed journal articles and conference papers published in English between January 1, 2015, and May 31, 2025. This timeframe was selected to focus on the most recent wave of research, coinciding with the widespread availability of consumer-grade VR and AR hardware.

Study Selection and Eligibility Criteria

The study selection process involved a two-phase screening procedure.

Phase 1: Title and Abstract Screening: The titles and abstracts of all retrieved articles were screened for relevance based on a set of predefined inclusion and exclusion criteria. Two researchers independently screened a subset of the articles to ensure inter-rater reliability, with any disagreements resolved through discussion.

Inclusion Criteria:

1. The study's primary focus is on the use of VR, AR, or other immersive technologies.
2. The context of the study is related to sustainability, environmental issues, or specific SDGs.
3. The application is educational, for training, or for raising public awareness.
4. The article is an empirical study (quantitative, qualitative, or mixed-methods), a systematic review, or a substantial theoretical paper.

Exclusion Criteria:

1. The article is not written in English.
2. The article is an editorial, a short commentary, a book review, or a non-peer-reviewed publication.

3. The study focuses purely on the technical development of VR/AR hardware or software without an applied educational or awareness component.
4. The connection to sustainability or environmental topics is trivial or non-existent.

Phase 2: Full-Text Review: Articles that passed the initial screening were subjected to a full-text review to confirm their eligibility. During this phase, the same inclusion and exclusion criteria were applied more rigorously. The reference lists of included articles and relevant review papers were also manually scanned (a process known as "snowballing") to identify any additional studies that may have been missed in the initial database search.

Data Extraction and Thematic Synthesis

For each study that met the final inclusion criteria, a structured data extraction form was used to systematically collect key information. The extracted data included: (a) bibliographic details (authors, year, journal); (b) study objectives; (c) methodological details (design, sample, setting); (d) technology specifications (e.g., VR headset model, AR platform); (e) core theoretical framework used; (f) key findings related to cognitive, affective, and behavioral outcomes; and (g) reported limitations and future research directions.

Following data extraction, a thematic synthesis approach was employed to analyze and integrate the findings. This qualitative method, as described by Thomas and Harden (2008), involves a three-stage process:

- 2 Line-by-line coding: The findings and discussion sections of each paper were coded to capture the essence of the research.
- 3 Development of descriptive themes: The initial codes were grouped into related areas to construct descriptive themes that summarized the findings across multiple studies (e.g., "Impact on Empathy," "Knowledge Retention in VR").
- 4 Generation of analytical themes: The descriptive themes were then interpreted and synthesized to generate higher-order analytical themes that address the research questions of this review (e.g., "VR as a Tool for Reducing Psychological Distance").

This systematic and thematic approach allows for a robust synthesis of the evidence, providing a rich, narrative-driven analysis of the field that goes beyond a simple summary of individual studies to offer new insights and a coherent understanding of the potential of VR and AR in sustainable education.

FINDINGS AND DISCUSSION

The thematic synthesis of the reviewed literature reveals several critical insights into the potential and application of VR and AR in sustainable education. The findings converge around four primary analytical themes: the power of immersive technologies to deepen cognitive and experiential understanding; their capacity to foster affective engagement and empathy; their role in catalyzing tangible behavioral change; and their strategic alignment with the global agenda for sustainable development. This section discusses these findings in detail, integrating the empirical evidence with the theoretical frameworks outlined in the literature review.

Deepening Understanding: From Abstract Concepts to Experiential Knowledge

A consistent finding across the literature is the profound ability of VR and AR to transform the learning of complex sustainability concepts from a passive, abstract exercise into an active, experiential one. Traditional pedagogical tools like textbooks and lectures often struggle to convey the dynamism,

scale, and interconnectedness of ecological systems. Immersive technologies overcome this by enabling what is often called "unseen learning"—making the invisible visible and the complex comprehensible.

Virtual Reality excels at creating holistic, systems-level understanding through virtual field trips and simulations. As demonstrated by Markowitz et al. (2018), transporting students to the bottom of the ocean to witness the effects of acidification on coral reefs leads to significantly greater learning gains than watching a 2D video on the same topic. The key mechanism here is presence; the feeling of being physically present in the virtual environment allows for embodied exploration. Learners are not just told that CO₂ dissolves in water to form carbonic acid; they see the coral bleaching and the ecosystem degrading around them. This creates a powerful, memorable, and deeply integrated understanding of the causal chain. These simulations function as interactive microworlds, allowing learners to manipulate variables (e.g., change the atmospheric CO₂ concentration) and observe the consequences in a compressed timeframe, an application of constructivist learning principles that is difficult to replicate in the real world.

Augmented Reality, on the other hand, excels at situated learning, embedding digital information directly into the learner's real-world context. The systematic review by Ladykova et al. (2024) noted the effectiveness of AR in environmental education, particularly with younger learners. For example, an AR application could be used on a nature walk to identify plant species, overlaying information about their ecological roles, medicinal uses, and conservation status. Another powerful application is in visualizing resource flows; a student could point their tablet at a school building and see an AR overlay of its real-time energy consumption, or point it at their lunch to see the water and carbon footprint associated with its production. This contextualizes abstract data, making it immediately relevant and actionable. By bridging the gap between the digital and physical worlds, AR provides a powerful tool for understanding the environmental impact of our immediate surroundings.

Cultivating Affective Engagement: Empathy as a Catalyst for Concern

Perhaps the most transformative potential of immersive technologies lies in their ability to engage the affective domain of learning—to foster empathy and cultivate a deep-seated emotional connection to environmental issues. Sustainability is not just a scientific challenge; it is an ethical and emotional one. VR, in particular, has been described as an "empathy machine" for its ability to facilitate powerful perspective-taking experiences.

By allowing users to embody an avatar, VR can enable them to experience the world from a completely different point of view. A user could become a farmer in a drought-stricken region, a resident of a low-lying island nation facing sea-level rise, or even a non-human animal, such as the sea turtle navigating an ocean full of plastic that was featured in the VR experience "The Crystal Reef." This process of embodiment can dissolve the psychological distance that separates us from the "other," whether that other is a person in a distant land or a creature in the sea. This is not just about seeing something; it is about feeling something. The emotional resonance of these experiences—the sense of loss, vulnerability, or wonder—can be a far more powerful motivator for pro-environmental attitudes than facts and figures alone.

The study by Nelson et al. (2020) provides strong empirical support for this, demonstrating that the emotional engagement generated by a VR experience of a threatened coral reef translated directly into increased financial donations for its conservation. This finding is critical, as it links affective

engagement in a virtual environment to tangible, real-world pro-environmental behavior. It suggests that VR can be a powerful tool not only for education but also for advocacy and fundraising by non-profit organizations.

Catalyzing Behavioral Transformation: From Intention to Action

The ultimate goal of sustainable education is to inspire action. A well-documented phenomenon in environmental psychology is the "value-action gap" or "intention-behavior gap," where individuals may hold strong pro-environmental values but fail to translate them into consistent behavior. The reviewed literature suggests that immersive technologies can play a crucial role in bridging this gap.

VR provides a unique environment for behavioral rehearsals. The study by Kleinlogel et al. (2023) is a prime example, using VR to create a virtual home where participants could learn and practice energy-saving behaviors. By receiving immediate, personalized feedback (e.g., seeing a virtual smart meter respond to their actions), users can form new habits in a safe, controlled environment. This process of practicing a behavior and experiencing its positive consequences reinforces the desired action and increases self-efficacy—the belief in one's ability to perform the action successfully. This is a powerful application of social cognitive theory, where learning occurs through observation and direct experience, even if that experience is virtual.

The use of a "doppelganger" or a personalized avatar, as explored by Kleinlogel et al. (2023), adds another layer to this. When users see an avatar that looks like them engaging in sustainable behaviors, it can trigger a powerful psychological process of identification and self-modeling, making the behavior seem more attainable and personally relevant. This personalization can make the educational message more persuasive and increase the likelihood of its adoption in the real world.

Strategic Alignment with the Sustainable Development Goals (SDGs)

Finally, the application of VR and AR in sustainable education is not merely a technological or pedagogical innovation; it is a strategic imperative for achieving the 2030 Agenda for Sustainable Development. The link to SDG 4 (Quality Education) is the most direct. Immersive technologies can help achieve Target 4.7, which calls for ensuring that all learners acquire the knowledge and skills needed to promote sustainable development. By providing engaging, effective, and potentially scalable learning solutions, VR and AR can democratize access to high-quality sustainability education.

However, the contribution of these technologies extends across the entire SDG framework. By fostering a generation of environmentally literate and motivated citizens, immersive education supports the implementation of all the environmental SDGs:

1. SDG 13 (Climate Action): VR visualizations of future climate scenarios can increase public understanding and support for ambitious climate policies.
2. SDG 14 (Life Below Water) and SDG 15 (Life on Land): Immersive experiences of marine and terrestrial ecosystems can foster a conservation ethic and mobilize support for protecting biodiversity.
3. SDG 12 (Responsible Consumption and Production): AR applications can empower consumers to make more informed and sustainable choices at the point of sale by providing transparent information about a product's lifecycle and environmental footprint.
4. SDG 11 (Sustainable Cities and Communities): VR can be used as a participatory planning tool, allowing citizens to visualize and co-design more sustainable urban futures.

As highlighted by Hariyani et al. (2025), the strategic deployment of immersive campaigns is a critical pathway for advancing sustainability literacy and climate action on a global scale. The

integration of AI with these platforms, as mentioned by Crespo et al. (2025), promises to create even more powerful, personalized, and adaptive learning systems that can tailor educational content to individual learners, further amplifying their impact.

Challenges, Limitations, and Ethical Considerations

While the potential of VR and AR in sustainable education is immense, a critical analysis also requires acknowledging the significant challenges, limitations, and ethical considerations that accompany their implementation. The reviewed literature, while largely optimistic, also raises several important points of caution that must be addressed for the responsible and effective deployment of these technologies.

The Digital Divide and Accessibility: The most frequently cited challenge is the issue of accessibility and equity. High-end VR systems, which provide the most immersive and impactful experiences, remain expensive and require powerful computing hardware. This creates a significant "digital divide," where affluent schools and communities can leverage these powerful tools while underserved populations are left behind. This risks exacerbating existing educational inequalities, a direct contradiction to the inclusive spirit of SDG 4. While the advent of more affordable, standalone headsets and mobile AR is lowering the barrier to entry, issues of hardware availability, internet access, and the technical literacy required to use and maintain these systems remain significant hurdles, particularly in developing countries.

Content Creation and Pedagogical Integration: The effectiveness of any educational technology is contingent on the quality of the content and its pedagogical integration. Creating high-quality, scientifically accurate, and pedagogically sound immersive experiences is a complex, time-consuming, and expensive process. It requires a rare combination of expertise in 3D modeling, programming, instructional design, and subject matter knowledge. Currently, there is a scarcity of high-quality educational content for sustainability, and many existing applications are short, one-off experiences rather than comprehensive learning modules. Furthermore, educators often lack the training and support needed to effectively integrate these new technologies into their curricula. Simply placing a VR headset in a classroom without a clear pedagogical framework, pre-briefing, and post-experience discussion is unlikely to yield meaningful learning outcomes.

Risk of Negative Psychological Effects: While VR can be an "empathy machine," it can also be a source of anxiety and distress. Immersing users in visceral, emotionally charged scenarios of environmental disaster—such as catastrophic floods, wildfires, or ecosystem collapse—carries the risk of inducing "eco-anxiety," a chronic fear of environmental doom. This is particularly a concern for younger learners. While a sense of urgency can be a motivator, overwhelming users with feelings of hopelessness and despair can be counterproductive, leading to apathy or denial. Ethical design must therefore carefully balance the need to convey the seriousness of environmental problems with the need to foster a sense of agency and hope. It is crucial to design experiences that not only highlight problems but also showcase solutions and empower users to feel that they can be part of the solution.

Simulation Fidelity and the Risk of Misconception: The power of simulation is also a potential pitfall. If a simulation is not scientifically accurate, it can lead to significant misconceptions. For example, an oversimplified model of a climate system could give learners a false sense of understanding or lead them to incorrect conclusions about the efficacy of certain interventions. There is a risk that the very immersiveness and perceived realism of VR could lead users to place undue confidence in the

information presented, even if it is flawed. This underscores the critical need for rigorous vetting of educational content by subject matter experts.

Distraction and Disconnection from Nature: Finally, there is a philosophical and pedagogical concern that an over-reliance on virtual experiences of nature could, paradoxically, lead to a greater disconnection from the real thing. While virtual field trips can supplement real ones, they should not replace them. The goal of environmental education is to foster a love and appreciation for the natural world, which ultimately requires direct, sensory experience. The challenge is to use technology not as a substitute for reality, but as a bridge to it—to use AR to enhance a real nature walk, or to use VR to inspire a user to visit and protect a local park. Striking this balance between the virtual and the real is perhaps one of the most subtle but important challenges for the future of immersive sustainable education.

CONCLUSION

This systematic review has synthesized a compelling and rapidly growing body of evidence demonstrating the transformative potential of Virtual Reality (VR) and Augmented Reality (AR) in the critical domains of sustainable education and public awareness. The central argument of this paper—that immersive technologies can serve as powerful catalysts for fostering the knowledge, attitudes, and behaviors necessary for a sustainable future—is strongly supported by the reviewed literature. By moving beyond the limitations of traditional pedagogy, VR and AR offer unique affordances for making complex environmental issues tangible, personal, and emotionally resonant. The findings clearly indicate that by leveraging the psychological principles of presence, embodied cognition, and perspective-taking, immersive experiences can effectively reduce the psychological distance to environmental problems, enhance cognitive understanding, cultivate profound empathy, and inspire tangible action.

The practical implications of these findings are significant for a wide range of stakeholders. For educators, immersive technologies offer a powerful new set of tools to create engaging, inquiry-based learning experiences that align with the principles of Education for Sustainable Development (ESD). For policymakers and non-governmental organizations, VR and AR provide innovative platforms for public outreach campaigns, advocacy, and fundraising, capable of mobilizing public support for conservation and climate action. For technology developers, the field of sustainable education represents a meaningful and rapidly growing market for socially impactful applications.

Furthermore, this paper has highlighted the strategic alignment of these technologies with the UN Sustainable Development Goals. The contribution is not limited to SDG 4 (Quality Education) but extends across the 2030 Agenda, offering a cross-cutting tool to advance goals related to climate, biodiversity, and responsible consumption.

Despite the promising outlook, it is crucial to acknowledge the limitations of the current body of research and to chart a course for future inquiry. This review has identified several areas that warrant further investigation:

- 1 **Longitudinal Impact Assessment:** The majority of existing studies focus on the short-term effects of VR/AR interventions. There is a critical need for longitudinal research that tracks participants over extended periods (months or even years) to assess the long-term retention of knowledge, the durability of attitudinal shifts, and the persistence of behavioral changes.

- 2 Comparative Efficacy and Contextual Factors: More research is needed to systematically compare the relative effectiveness of different immersive modalities (e.g., high-immersion VR vs. mobile AR) against each other and against well-designed traditional methods. Furthermore, future studies should investigate how contextual factors—such as the learner's age, prior knowledge, cultural background, and the social setting of the experience—moderate the impact of these technologies.
- 3 Addressing the Digital Divide: The issue of accessibility and equity remains a significant barrier. Future research should focus not only on the efficacy of high-end systems but also on the development and evaluation of low-cost, scalable solutions (e.g., WebXR, mobile AR) that can reach a broader and more diverse audience. Studies should also explore strategies for equitable implementation in underserved communities and educational systems.
- 4 Development of Pedagogical Frameworks: There is a need to move from ad-hoc applications to the development of robust, evidence-based pedagogical frameworks for designing and integrating immersive learning experiences into formal and informal curricula. This includes creating best-practice guidelines for educators on how to facilitate and debrief immersive experiences to maximize their educational impact.
- 5 Ethical Considerations: As immersive experiences become more realistic and emotionally powerful, it is imperative to investigate the associated ethical considerations. This includes the potential for inducing "eco-anxiety" or trauma, the psychological effects of embodying distressing scenarios, and issues of data privacy and user manipulation.
- 6 Synergy with Other Technologies: The future of immersive education will likely involve the integration of VR/AR with other emerging technologies. Research should explore the synergistic potential of combining immersive platforms with Artificial Intelligence (AI) for creating personalized and adaptive learning pathways, and with the Internet of Things (IoT) for connecting virtual experiences to real-world environmental data.

VR and AR represent a new and exciting frontier in the global quest for sustainability. While challenges remain, the potential is undeniable. By harnessing the unique power of these technologies to inform the mind and touch the heart, we can empower a new generation of global citizens to not only understand the complex challenges we face but to feel a profound sense of connection and responsibility, and to act decisively in building a more just, equitable, and sustainable world. The journey has just begun, and continued research, innovation, and thoughtful implementation will be key to unlocking the full transformative potential of immersive technologies for our planet and its people.

REFERENCES

- [1] Kollmuss, A., & Agyeman, J. (2002). Mind the Gap: Why do people act environmentally and what are the barriers to pro-environmental behavior? *Environmental Education Research*, 8(3), 239-260. <https://www.tandfonline.com/doi/abs/10.1080/13504620220145401>
- [2] Ladykova, T. I., Sokolova, E. I., Grebenschikova, L. Y., Sakhieva, R. G., Lapidus, N. I., & Chereshneva, Y. V. (2024). Augmented reality in environmental education: A systematic review. *Eurasia Journal of Mathematics, Science and Technology Education*, 20(8), em2488. <https://www.ejmste.com/article/augmented-reality-in-environmental-education-a-systematic-review-14914>

[3] Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2024). Role of Virtual Reality in advancing education with the essence of industry 4.0. *Sensors and Actuators: Physical*, 367, 114826.

<https://www.sciencedirect.com/science/article/pii/S092442472300758X>

[4] Nelson, K. M., Anggraini, E., & Schlueter, A. (2020). Virtual reality as a tool for environmental conservation and fundraising. *PLoS One*, 15(4), e0223631.

<https://pmc.ncbi.nlm.nih.gov/articles/PMC7135095/>

[5] Slater, M. (2009). Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 364(1535), 3549-3557. <https://royalsocietypublishing.org/doi/10.1098/rstb.2009.0138>

[6] Slater, M., & Sanchez-Vives, M. V. (2016). Enhancing our lives with immersive virtual reality. *Frontiers in Robotics and AI*, 3, 74. <https://www.frontiersin.org/articles/10.3389/frobt.2016.00074/full>

[7] Spence, A., Poortinga, W., & Pidgeon, N. (2012). The psychological distance of climate change. *Risk Analysis*, 32(6), 957-972. <https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1539-6924.2011.01695.x>

[8] Kleinlogel, E. P., Schmid Mast, M., Renier, L. A., Bachmann, M., & Brosch, T. (2023). Immersive virtual reality helps to promote pro-environmental norms, attitudes and behavioural strategies. *Cleaner and Responsible Consumption*, 8, 100105.

<https://www.sciencedirect.com/science/article/pii/S2666784323000062>

[9] Riva, G., Wiederhold, B. K., & Mantovani, F. (2019). Neuroscience of virtual reality: From virtual exposure to embodied medicine. *Cyberpsychology, Behavior, and Social Networking*, 22(1), 82-96.

<https://www.liebertpub.com/doi/abs/10.1089/cyber.2017.29099.gri>

[10] Markowitz, D. M., Laha, R., Perone, B. P., Pea, R. D., & Bailenson, J. N. (2018). Immersive virtual reality field trips facilitate learning about climate change. *Frontiers in Psychology*, 9, 2364. <https://www.frontiersin.org/articles/10.3389/fpsyg.2018.02364/full>

[11] Hariyani, D., Singh, S. K., & Kumar, S. (2025). Digital technologies for the Sustainable Development Goals. *Digital Transformation and Society*.

<https://www.sciencedirect.com/science/article/pii/S2949736125000363>

[12] Crespo, J. E., García-Lirios, C., & Montesdeoca, M. G. (2025). Immersive learning of the Sustainable Development Goals (SDGs) in literature from 2020 to 2024. *Journal of Engineering and Natural Sciences*. <https://pen.ius.edu.ba/index.php/pen/article/view/478>