

Research on the Integration and Development of AI Technology and Art in the New Era

Jiang houzhi*

Universitas Pendidikan Ganesha

ABSTRACT

Driven by the rapid iteration of intelligent technologies (e.g., AI, virtual reality, real-time rendering), the animation industry is shifting from traditional creation to intelligent production. The growing synergy and contradictions between technological innovation and artistic expression make their in-depth integration a key to high-quality industrial development—this forms the study's core background. This research aims to analyze the internal logic, existing problems, and optimization paths of such integration, providing theoretical and practical support for animation creation and industry growth. Methodologically, it combines literature research (to sort domestic and international tech-art integration theories), case analysis (e.g., Spider-Man: Into the Spider-Verse for real-time rendering, Love, Death & Robots for AI-assisted scripting, to deconstruct integration modes), and expert interviews (to collect insights from creation teams and R&D personnel). Results show intelligent technologies have widely penetrated character generation, scene construction, motion capture, and post-rendering, boosting efficiency and visual appeal. However, issues emerge: excessive tech use weakens artistic individuality, algorithm logic conflicts with aesthetics, and technical ethics disputes arise. Conclusions highlight that integration must follow “technology serving art”—via building tech-art collaboration mechanisms, strengthening interdisciplinary talent training, and improving ethics norms—to achieve dynamic balance. Contributions include enriching the tech-art integration theoretical system (offering new interdisciplinary perspectives for animation research) and providing actionable strategies for creators, aiding industrial innovation, and informing policy-making.

Keywords: Animation industry, Art-technology integration, Intelligent technologies, Interdisciplinary talent, Technical ethics

INTRODUCTION

In the age of intelligence, technology is driving unprecedented transformation in the animation industry. From traditional hand-drawn animation to digital animation, and now to the widespread application of artificial intelligence (AI) in animation production, the animation industry is undergoing a profound revolution. The introduction of AI technology has brought new tools and methods to animation production, greatly improving production efficiency and expanding creative possibilities. From character design and scene construction to animation generation and special effects creation, AI technology is integrated into every aspect of animation production, providing animators with more creative inspiration and expressive tools.

In the field of animation education, the integration of technology and art has become increasingly important. As the animation industry's talent needs continue to evolve, traditional animation teaching models are no longer able to meet market demands. Cultivating interdisciplinary talents with both a solid foundation in artistic skills and a proficiency in modern animation techniques has become a crucial challenge for animation education. Introducing AI technology into animation instruction, achieving a deep integration of technology and art, will not only improve teaching quality but also better prepare students for future careers.

This research aims to leverage AI technology to explore teaching models that integrate animation technology and art, providing new insights and approaches for animation education. Specifically, by studying the application of AI technology in animation instruction and analyzing its impact on students' artistic creativity and technical application abilities, we will construct an AI-based animation teaching system to improve the quality and effectiveness of animation instruction and cultivate more animation

professionals adaptable to the demands of the intelligent age.

This research contributes to enriching animation teaching theory and improving the academic system for integrating technology and art. By deeply exploring the application of AI technology in animation teaching and analyzing its impact on teaching methods, teaching content, and teaching evaluation, it can provide new perspectives and empirical evidence for the development of animation education theory. Studying the integration mechanism of AI technology and animation art can also expand the research scope of animation art theory, promote the cross-integration of animation art with disciplines such as computer science and artificial intelligence, and promote the development of related academic fields. From a practical perspective, the findings of this research will provide practical guidance for animation teaching practices. The AI-based animation teaching model can provide teachers with new teaching methods and tools, helping them better organize teaching activities and improve teaching efficiency. For students, this teaching model can stimulate their learning interest and innovative thinking, enhance their animation creation and technical application capabilities, and enable them to more quickly adapt to the demands of the animation industry after graduation. This research can also provide reference for animation education institutions and university animation majors in curriculum design and teaching resource development, promoting the reform and development of animation education and cultivating more high-quality professionals for the animation industry.

The traditional animation teaching model has exposed many problems in long-term practice. These problems have seriously restricted the quality and effectiveness of animation teaching and are unable to meet the demand for animation talents in the intelligent era. Traditional animation instruction is inefficient. From hand-drawn sketches and key drawings to creating in-between frames, students must manually complete every step, which is not only time-consuming and labor-intensive but also prone to errors. For example, when drawing complex scenes, students may spend days completing a single key drawing. Once problems are discovered and modifications are made, a significant amount of work must be re-engaged. This inefficient teaching method makes it difficult for students to complete a large number of works within their limited timeframe and prevents them from rapidly accumulating practical experience. Furthermore, traditional teaching methods are limited and rarely involve modern teaching equipment, which places relatively low demands on the quality of teachers and hinders their overall overall development. Traditional teaching methods lack access to cutting-edge teaching methods, such as computer networks and various audio-visual equipment. This leads teachers and students to focus on the present, lacking an understanding of the ever-changing world and the ever-changing knowledge available.

Traditional animation instruction falls short in inspiring creativity. Traditional teaching often focuses on skill training, emphasizing the mastery of fundamentals like drawing techniques and animation principles, while fostering creativity and innovative thinking. During instruction, students often practice imitation exercises based on the teacher's guidance and examples, lacking the space for independent thinking and exploration. This approach limits students' imagination and creativity, making it difficult to cultivate animation talent with unique creativity and innovation. For example, in animation scriptwriting courses, students may simply adhere to fixed narrative patterns and character settings, lacking the exploration of novel themes and unique perspectives, resulting in work that lacks individuality and appeal.

Traditional animation instruction struggles to achieve diverse styles. In traditional teaching environments, teachers' teaching styles and preferences often significantly influence students, leading them to develop similar creative styles. Limited resources and access to information limit the types and styles of animation works students are exposed to, making it difficult for them to broaden their horizons and absorb the essence of diverse styles. This results in students adopting a relatively single style when creating, failing to meet market demand for diverse animation works. For example, in 2D animation instruction, students may be more influenced by a single traditional painting style, while having little exposure to emerging painting styles and forms of expression. This results in a lack of innovation and diversity in their work.

Although AI animation technology has brought new opportunities to animation teaching, it also faces many challenges in practical application. On a technical level, AI animation technology still has certain limitations. While AI can quickly generate the basic framework for animation and simulate various styles of painting and movement, it still lags far behind human creators in terms of detailed expression and artistic appeal. For example, the expressions and movements of AI-generated characters

may not be natural or vivid, lacking nuanced emotional expression. When minor adjustments are required to AI-generated animations, they often face high technical barriers, requiring algorithm modification or re-entry of specific data, which is difficult for most animation teams and students. The application of AI technology in animation production also requires powerful hardware support and software platforms, which places high demands on schools' teaching equipment and resources. Some schools may be unable to meet these requirements due to limited funds.

Copyright issues are a major challenge in the application of AI animation technology. AI-generated content is often generated based on extensive data learning and algorithms, which may include the work of other creators. Therefore, the copyright ownership of AI-generated content is controversial. The use of AI-generated animation materials in teaching may lead to copyright disputes, posing potential legal risks for teaching. When AI-generated animation clips are used in student assignments or work presentations, it is difficult to determine whether the copyright belongs to the company that developed the AI algorithm or the student or teacher using the AI tool. This requires further legal and ethical discussion.

Ethical issues also cannot be ignored. With the increasing application of AI in animation education, concerns are growing that overreliance on AI could lead to a decline in students' artistic creativity, causing animations to lose their soul and unique artistic style. AI-generated content may contain harmful or misleading information, and how to regulate and screen it to ensure healthy and positive teaching content is a pressing issue. Improper use of AI animation technology in teaching may prevent students from gaining a deep understanding and experience of the artistic creation process, hindering their artistic literacy and aesthetic development. From an employment perspective, the widespread use of AI in the animation industry may have a certain impact on the employment of animators. If some basic animation production tasks can be performed by AI, those engaged in simple animation production may face employment pressure. This requires practitioners in the animation industry to continuously improve their skills and qualifications, and develop into more advanced creative and technical fields to adapt to industry changes.

In the intelligent era, integrating AI animation technology into teaching and building innovative teaching models has become a pressing issue. Under traditional teaching models, students' learning process is often passive, lacking autonomy and creativity. The introduction of AI animation technology, however, presents new opportunities for teaching. In-depth research is needed to explore how to leverage AI animation technology to enrich teaching content and formats, stimulating student interest and initiative. We can explore using AI animation technology to create vivid teaching cases, presenting abstract knowledge in an intuitive animated format to students, helping them better understand and master the knowledge. For example, when explaining the principles of animation, AI animation can be used to demonstrate the production process of different effects, allowing students to intuitively see the animation's creation mechanism and enhance learning outcomes.

Another research focus is how to design teaching activities based on AI animation technology to foster students' practical skills and innovative thinking. Students can be organized to practice animation creation using AI animation tools, allowing them to master AI animation technology through practice while also cultivating their innovative thinking and teamwork skills. By setting challenging creative tasks, students are encouraged to unleash their imagination and apply AI animation technology to create uniquely styled animations, thereby enhancing their overall abilities. During the creative process, students can input keywords based on their creativity. The AI animation tool generates corresponding animation segments based on these keywords, which students then combine and optimize to create the final work.

Determining indicators and methods for evaluating the effectiveness of technology-art integration teaching is key to measuring and improving teaching quality. Regarding knowledge acquisition, accurately assessing students' mastery of animation technology and art theory through exams and assignments is a critical issue. Targeted tests can be designed to assess students' operational proficiency in AI animation technology and their understanding of theoretical knowledge such as animation art style and aesthetics. Regarding skill development, effectively assessing students' progress in animation creation skills and innovation through portfolio evaluation and hands-on practice is also a key area of research. Students can participate in animation competitions, assessing their skill development through the quality of their entries and their performance. Observing students' proficiency and innovation in daily practical operations can also provide a comprehensive assessment of their skill development.

Analyzing the impact of technology-arts-integrated instruction on students' learning interest, attitudes, and motivation is also crucial. Questionnaires and student interviews can be used to gauge student satisfaction and feedback regarding technology-arts-integrated instruction and analyze its impact on students' learning interest and attitudes. Tracking student motivation can also help determine whether the instructional model stimulates students' intrinsic motivation and promotes autonomous learning and sustainable development. If students demonstrate increased enthusiasm and initiative in their learning and a passion for animation creation, this indicates that the technology-arts-integrated instructional model is effectively stimulating student motivation.

This research aims to design a teaching system that integrates animation technology and art based on AI animation technology to meet the demand for animation talent in the intelligent era. This teaching system will take AI animation technology as its core and combine the advantages of traditional animation teaching to achieve an organic fusion of technology and art.

The curriculum will integrate AI animation technology courses with traditional animation art courses. Technical courses such as AI Animation Fundamentals, AI Character Design, and AI Scene Construction will be offered to help students master the fundamental principles and operational methods of AI animation technology. At the same time, art theory courses such as Introduction to Animation, Animation Aesthetics, and Animation History will be retained to enhance students' artistic literacy and aesthetic appreciation. Fusion courses such as AI Animation Creative Design and AI Animation Artistic Expression will also be offered to guide students in applying AI technology to artistic creation in practice, cultivating their innovative and comprehensive application capabilities.

In terms of teaching methods, a diverse range of approaches will be adopted, including project-driven instruction, case studies, and group collaborative learning. Through project-driven instruction, students will be able to integrate their acquired AI animation technology and artistic knowledge while completing specific animation projects, enhancing their problem-solving skills. For example, in an animation project themed "Future City," students will be required to use AI animation technology to generate elements such as city scenes and character images, and apply their artistic knowledge to creative design and style development to complete a complete animation. In case studies, outstanding AI animation works will be selected as examples, analyzing their technical implementation and artistic expression techniques, guiding students to learn and draw inspiration from them. Through group collaborative learning, students will develop teamwork and communication skills, allowing them to progress together through mutual exchange and collaboration.

One of the important goals of this study is to improve students' technical application and artistic expression capabilities in animation creation through teaching practice. In terms of technical application, through teaching, students will be proficient in AI animation technology, including but not limited to AI painting, AI character animation generation, AI scene rendering and other technologies. Students can use these technologies to quickly generate high-quality animation materials and improve the efficiency of animation production. Students can use AI painting technology to input keywords according to their own creativity to quickly generate character design sketches and scene concept maps; use AI character animation generation technology to add natural and smooth movements to characters, reducing the workload of manual animation. Students should also have the ability to optimize and adjust AI-generated content, and be able to perform detail processing and artistic processing on AI-generated animations according to the needs of artistic creation, so that they are more in line with artistic aesthetics and creative requirements.

In terms of artistic expression, we focus on cultivating students' innovative thinking and unique artistic style. Through the study of art theory courses and artistic practice activities, we guide students to deeply understand the connotation and aesthetic standards of animation art, and improve their artistic appreciation and aesthetic level. We encourage students to use their imagination in animation creation, break through the constraints of traditional thinking, and use AI animation technology to express their unique artistic viewpoints and emotions. In animation script creation, we guide students to explore novel themes and unique perspectives, and use AI technology to assist in creation, making the story more vivid and interesting. In character design and scene construction, we encourage students to try different artistic styles, combining the characteristics of AI technology to create animated characters and scenes with personality and charm. Through teaching practice, students can perfectly integrate technology and art in animation creation, create animated works with high artistic value and market competitiveness, and enhance their employment competitiveness and career development potential in the animation industry.

This study, from the unique perspective of integrating technology and art, deeply explores the transformative impact of AI animation technology on animation teaching. This is innovative in the current field of animation education research. Traditional animation teaching research often focuses on either artistic creation or technological application, rarely integrating the two for in-depth analysis. However, this study fully recognizes that in the intelligent era, the integration of animation technology and art is an inevitable trend in the development of animation education. By studying the integration mechanisms and teaching models of the two, it provides new ideas and methods for animation education. Taking keyword identification, a key aspect of AI animation technology, as an example, traditional research may focus solely on the technical application of keywords, such as how to use them to more accurately generate animation content. This study, however, not only explores the role of keywords in technical implementation but also deeply analyzes their value in inspiring students' artistic creativity. When students input the keyword "fantasy adventure in a mysterious forest," AI animation technology can quickly generate relevant animation scenes and character elements. This study focuses on how to guide students to screen, combine, and recreate these generated elements from an artistic perspective, creating animated works with unique artistic style and emotional expression. This perspective breaks the boundaries between technology and art in previous research and opens up new directions for animation teaching research.

This study employs qualitative analysis, conducting a multi-dimensional in-depth analysis of the feasibility and effectiveness of integrating AI animation technology with art instruction. This is a key innovation. Previous studies have often employed quantitative analysis, validating hypotheses through statistical analysis and experimental comparisons. However, animation instruction is a complex system, involving difficult-to-quantify factors such as students' artistic perception, creative expression, and emotional experience. Quantitative analysis alone is unable to fully and deeply reveal its underlying principles.

This study employed qualitative analysis methods, gathering insights and feedback from teachers and students about their teaching practices. A thorough analysis of typical teaching cases explored both successful experiences and challenges in integrating technology and art. The interviews explored the challenges teachers faced when applying AI animation technology to teaching, as well as their perspectives and suggestions on integrating technology and art. Through discussions with students, the study explored their learning experiences and the impact of AI animation technology on their artistic creativity and innovative thinking. Observational methods were also employed to observe student performance and engagement in class, analyzing the impact of teaching activities on stimulating student interest and motivation. The combined application of these qualitative analysis methods enabled a more comprehensive and in-depth understanding of the practical application of AI animation technology and art in teaching, providing a richer and more reliable basis for drawing research conclusions.

AI animation refers to the process of generating animated content using artificial intelligence (AI). Its core principle is based on deep learning algorithms. By absorbing large amounts of animation data, image data, and relevant artistic style data, AI can understand the basic elements, movement patterns, and artistic expression techniques of animation, thereby achieving automatic or assisted animation generation.

Keyword generation technology is a crucial component of AI animation. Keywords, as a crucial way for users to interact with AI systems, guide the AI in generating animation content tailored to their creative needs. For example, if a user enters the keyword "elf dance in a magical forest," the AI animation system first performs semantic analysis to understand the key elements contained within, such as "magic forest," "elf," and "dance." Then, based on previously learned data, the AI extracts images, actions, and other information related to these elements from its vast library of assets or generative models, and combines them into an animation clip. When generating the "magic forest" scene, the AI may reference previously learned fantasy forest scenes, including tree forms, lighting effects, and mysterious mists, to create a fantasy-inspired forest scene. For the "elf" character, the AI generates an agile and graceful elf character based on its learning of elf images, including details such as appearance and clothing. When generating "dance" movements, AI uses motion generation algorithms, refers to various dance movement data, generates natural and smooth dance movements, and applies them to the sprite character, ultimately generating a coherent animation.

AI animation technology also involves the synergy of various other technologies. Image generation technology is used to generate static images for animation, such as character images and

scene scenes; motion generation technology is responsible for adding various movements to characters to make them vivid and expressive; and natural language processing technology is used to understand user input keywords or text descriptions, translating user creativity into instructions that can be understood and processed by the AI system. Through the organic combination of these technologies, AI animation can quickly and efficiently generate diverse animation content, bringing new possibilities and efficiency improvements to animation creation.

The fusion of animation technology and art refers to the organic combination of various technical means involved in animation production with artistic concepts, aesthetic standards, creative expression, etc. in the animation creation process, so as to create animation works that have both exquisite technical performance and artistic appeal.

From a fundamental perspective, animation technology is a crucial means of artistic expression, providing diverse forms of expression and creative tools for animation art. Digital painting techniques enable animators to more easily create exquisite images, 3D modeling technology enables the creation of realistic virtual scenes and characters, and the various special effects tools in animation software enhance the visual impact of animation. Art is the soul of animation, endowing animated works with unique style, profound connotations, and strong emotional resonance. Artistic elements include story themes, character development, composition, color use, and music and sound effects. These elements collectively create the artistic atmosphere and aesthetic value of an animation work.

In terms of expression, the fusion of animation technology and art is reflected in multiple aspects.

Character design not only utilizes advanced digital modeling techniques to create the characters' appearances, but also strives to imbue them with unique personalities and charm from an artistic aesthetic perspective. Pixar Animation Studios' character design utilizes sophisticated technology to vividly depict the characters' physical details. At the same time, through artistic modeling and facial expressions, the characters possess rich emotions and distinct personalities, resonating deeply with the audience. In terms of scene construction, computer graphics technology is used to create realistic virtual scenes, combined with artistic techniques such as color matching and lighting effects to create a unique atmosphere and artistic conception. The planet Pandora in the film "Avatar" utilizes advanced 3D modeling and rendering technology to create a magnificent and fantastical alien world. The use of artistic color and lighting creates an immersive experience, allowing the audience to experience the unique charm of this virtual world. In terms of animation narrative and rhythm control, technology ensures the smooth playback and special effects display of animation, while art determines the plot development, emotional ups and downs, and rhythm of the story, so that the animation work can attract the audience's attention and guide the audience to deeply understand the connotation of the work.

LITERATURE REVIEW

Research on the Application of AI Technology in Animation

In recent years, research on the application of AI technology in the animation field has made significant progress. Many scholars have focused on the specific application of AI technology in various aspects of animation production, bringing new perspectives and methods to animation creation. AI technology has demonstrated powerful support capabilities in character design. Some studies have used machine learning algorithms to train AI on a large number of excellent character design examples, enabling it to quickly generate diverse character images based on set keywords. These generated characters are not only distinctive in appearance but also reflect different personalities and styles. In his paper, "Application and Exploration of AI-Assisted Character Design in Animation Creation," scholar Li Ming noted that using AI for character design can provide animators with a wealth of creative inspiration in a short period of time, significantly shortening the initial conception process for character design. By inputting keywords such as "brave boy" and "mysterious witch," AI can quickly generate corresponding character sketches, including details such as the character's appearance, clothing, and expression. Animators can then modify and refine these sketches, improving design efficiency and quality.

AI technology also plays a crucial role in scene construction. Leveraging deep learning models, AI can generate realistic virtual scenes based on given keywords and scene descriptions. For example, by inputting keywords like "future city" and "ancient castle," AI can construct corresponding city and castle scenes, complete with architectural layouts, environmental details, and lighting effects. In his paper

"Research on Animation Scene Generation Based on AI Technology," Wang Hua notes that AI-generated scenes not only meet the basic requirements of animation production but also, through unique algorithms, generate creative and imaginative scenes, adding even more possibilities to animation creation. AI can also automatically adjust scene parameters like color tones, lighting, and shadows based on the plot and atmosphere of the animation, ensuring the scene better aligns with the overall style of the animation.

The application of AI technology in the animation generation process has also revolutionized animation production. By learning from large amounts of animation data, AI can understand the movement patterns and expression techniques of animation, enabling automatic or assisted animation generation. Some studies have used generative adversarial network (GAN) technology to allow AI to generate key frames for animation, and then generate intermediate frames through interpolation algorithms, thereby quickly producing a coherent animation. In "The Development and Challenges of AI Animation Generation Technology," Zhang Yue analyzed the advantages and disadvantages of AI animation generation technology, pointing out that although AI-generated animations still need to be improved in terms of fluidity and naturalness, they have already demonstrated great potential in some simple animation production and creative exploration. AI can also automatically generate matching animation movements based on elements such as music and sound effects, achieving an organic combination of animation and audio.

Related Research on Animation Teaching

The study of animation teaching has always been an important topic in the field of animation education. Scholars have conducted in-depth analysis of the development of traditional animation teaching methods and modern teaching concepts from different perspectives.

Traditional animation teaching methods focus on skill training, emphasizing the imparting of basic knowledge such as hand-drawing skills and animation principles. In early animation instruction, teachers often employed demonstration, demonstrating each step of animation production live and allowing students to imitate and learn. For example, in 2D animation instruction, teachers would explain in detail the steps of hand-drawn animation, including sketching, key drawing, and in-between frame drawing. Students mastered these skills through extensive practice. While this teaching method allows students to gain a solid grasp of the fundamental skills of animation production, it also has some limitations. Overemphasizing skill training can neglect the cultivation of students' creativity and innovative thinking, resulting in a lack of individuality and uniqueness in their work.

With the development of the times, modern teaching concepts have gradually emphasized the student's central role, focusing on cultivating their comprehensive abilities and innovative thinking. In animation teaching, methods such as project-based learning and case studies are widely used. Project-based learning allows students to participate in real-life animation projects, putting their knowledge into practice and cultivating teamwork, problem-solving, and innovation. In an animated short film production project, students form teams and participate in the entire process, from scriptwriting, character design, and scene construction to animation production and post-production compositing, improving their comprehensive abilities through practice. Case studies analyze outstanding animation works, guiding students to learn about their creativity, technology, and artistic expression, stimulating their interest in learning and innovative thinking. Teachers select classic works from renowned animation studios such as Disney and Pixar, analyzing their successful experiences in character creation, plot setting, and image composition, allowing students to draw inspiration from these works and improve their own creative skills.

Modern teaching concepts also emphasize the diversification of teaching resources and the modernization of teaching methods. With the development of internet technology, online teaching resources and virtual laboratories are increasingly being applied to animation instruction. Students can watch animation instructional videos and participate in online discussions and exchanges through online platforms, broadening their learning channels. Virtual laboratories allow students to conduct animation experiments in a virtual environment, reducing experimental costs and improving learning efficiency. Some schools are also utilizing technologies such as virtual reality (VR) and augmented reality (AR) to provide students with a more immersive learning experience, enhancing their interest and engagement.

Research on the Integration of Technology and Art

Research on the integration of technology and art spans multiple fields, providing rich insights and insights for animation education. In the field of digital art, the fusion of technology and art has become

a growing trend. The development of digital technology has expanded artistic creation possibilities, allowing artists to utilize computer software and digital devices to create works with unique styles and expressiveness. In digital painting, artists can utilize tools like drawing tablets and painting software to achieve effects unattainable with traditional painting, such as rapid color adjustment and layer management. This fusion of technology and art not only enriches the forms and content of artistic creation but also introduces new perspectives to art education. In art education, digital technology can be integrated with art theory to cultivate students' creative and aesthetic abilities in digital art. By offering courses such as digital painting and digital sculpture, students can master the techniques and methods of digital art creation while also understanding the connotations and aesthetic standards of art, thereby enhancing their artistic literacy.

In the field of design, the fusion of technology and art is also reflected in product design and graphic design. In product design, designers need to apply engineering knowledge and aesthetic principles to design products that are both practical and beautiful. Apple's product design focuses not only on product function and performance, but also on appearance and user experience. This seamless fusion of technology and art creates products that are both aesthetically pleasing and practical. In graphic design, designers utilize technical tools such as image processing and typesetting software, combined with design concepts and creativity, to create visually impactful graphic works. This fusion of technology and art requires designers to possess interdisciplinary knowledge and skills, able to organically integrate technology and art. In animation teaching, we can draw on experience in the design field to cultivate students' interdisciplinary thinking and comprehensive abilities, allowing them to master animation techniques while also focusing on artistic creativity and aesthetic expression, thereby creating high-quality animation works.

In film and television production, the fusion of technology and art is most vividly demonstrated. From special effects and cinematography to editing and sound design, everything relies on the interplay of technology and art. Hollywood films utilize advanced computer graphics and motion capture technology in special effects production, creating stunning visuals. At the same time, they emphasize artistic appeal in plot and character development, attracting the attention of audiences worldwide. In film and television instruction, by analyzing the production processes of outstanding films and television productions, students can understand the role and interrelationship of technology and art in film and television creation, cultivating their film and television production skills and artistic appreciation. In animation instruction, we can draw on technical and artistic techniques from film and television production, such as camera language, editing techniques, and the use of sound effects, to enhance the quality and artistic appeal of animations.

Research Framework

Theoretical Basis

This study, informed by constructivist learning theory, explores the inherent logic of integrating AI animation technology with instruction. Constructivist learning theory emphasizes that students are the primary agents of learning, and that knowledge is not imparted by teachers but rather acquired through the construction of meaning by learners within a specific context—that is, within a specific social and cultural context—with the help of others (including teachers and learning partners), and through the use of necessary learning materials.

Constructivist learning theory plays a crucial role in the integration of AI animation technology into teaching. When creating teaching scenarios, AI animation technology can create more realistic, vivid, and engaging animation scenarios. When teaching animated character design courses, teachers can use AI animation technology to generate character images in various styles and use animations to showcase these characters in different scenarios, creating an immersive learning environment for students. In these environments, students can more intuitively experience the characteristics and charm of different character designs, sparking their interest in learning and a desire to explore, actively building their understanding of character design knowledge.

In terms of collaborative learning, constructivist theory advocates cooperation and communication among students, believing that this helps them understand knowledge from multiple perspectives and broaden their horizons. In AI-based animation teaching, students can be organized into small groups to work on animation projects. During the project implementation, students need to discuss the animation's theme, style, plot, and other aspects, and apply AI animation technology to character design, scene construction, and animation production. In this process, students exchange ideas, learn from each other,

and collaborate to complete project tasks. This not only improves their teamwork skills but also promotes a deeper understanding and application of knowledge. For example, in an animation project themed "campus life," some team members were responsible for using AI to generate campus scenes, some for character design, and some for writing the animation script. Through collaboration, they combined their individual creativity with AI technology to create a complete animation. In this process, students gained a deeper understanding and mastery of all aspects of animation production.

Research Hypotheses

Based on in-depth thinking on the integration of AI animation technology and teaching, this study proposes the following hypotheses:

Hypothesis 1: Introducing AI animation technology into teaching can significantly improve teaching efficiency. AI animation technology can quickly generate animation materials, such as character images and scene images, significantly reducing animation production time. In traditional teaching, it may take students several days to draw a complex animation scene. However, with AI animation technology, by inputting relevant keywords such as "ancient palace" and "future city", the corresponding scene sketch can be generated in a short time. Students can then modify and improve the sketch based on this, saving a considerable amount of time and energy. AI animation technology can also automatically complete some repetitive tasks, such as generating in-between frames of animation, reducing students' workload and allowing them to devote more time and energy to creative design and artistic expression, thereby improving teaching efficiency.

Hypothesis 2: AI animation technology can effectively stimulate students' learning interest and innovative thinking. AI animation technology possesses powerful creative generation capabilities. By inputting different keywords, it can generate diverse animation content, providing students with rich creative inspiration. For example, when a student inputs the keyword "mysterious underwater world," the AI animation system can generate various fantastical underwater creatures, mysterious underwater ruins, and other elements. This novel and intriguing content can spark students' curiosity and desire for exploration, fostering a deeper interest in learning animation. AI animation technology can also break through the limitations of traditional animation production, allowing students to experiment with various artistic styles and forms of expression, encouraging them to unleash their imagination and create innovative works, thereby cultivating their creative thinking.

Hypothesis 3: A teaching model that integrates technology and art can enhance students' comprehensive abilities. Under this model, students not only master AI animation technology but also delve into relevant knowledge about animation art, such as animation aesthetics and history, focusing on artistic creativity and aesthetic expression. By integrating technology and art, students can better utilize technical means to realize their artistic visions in animation creation, creating works that are both technically sophisticated and artistically appealing. In character design, students utilize AI technology to create realistic character appearances while applying artistic knowledge to imbue characters with unique personalities and emotions, making them more vivid and lifelike. This teaching model also fosters students' interdisciplinary thinking and comprehensive application skills, enhancing their competitiveness in the animation industry.

Research model construction

This study constructed an integrated teaching model that includes teaching content, teaching methods, teaching evaluation and other elements, aiming to achieve an organic combination of AI animation technology and art teaching, and improve the teaching quality and students' comprehensive abilities.

In terms of teaching content, AI animation technology courses are deeply integrated with traditional animation art courses. AI animation technology courses cover AI animation fundamentals, AI drawing, AI character animation generation, and AI scene rendering, enabling students to master the core knowledge and skills of AI animation technology. Traditional animation art courses include animation overview, animation aesthetics, animation history, animation character design, and animation scene design, aiming to enhance students' artistic literacy and aesthetic level. Fusion courses such as AI Animation Creative Design and AI Animation Artistic Expression are also offered. Through practical project cases, students are guided to apply AI technology to artistic creation, organically integrating technology and art. In the AI Animation Creative Design course, teachers assign an animation theme, and students use AI animation technology to generate relevant animation materials. They then screen, combine, and recreate these materials from an artistic and creative perspective to complete an animation

work with a unique style.

The program utilizes a diverse range of teaching methods, including project-driven instruction, case studies, and collaborative group learning. Project-driven instruction leverages real-world animation projects, allowing students to apply their acquired knowledge and skills while completing them, enhancing their problem-solving abilities. Students are assigned an animated short film production project, participating in the entire process from scriptwriting, character design, scene construction, animation production, to post-production compositing, mastering AI animation technology and artistic creation methods through practice. Case studies analyze outstanding AI animation works, guiding students to explore their technical implementation and artistic expression, stimulating their interest in learning and fostering innovative thinking. Collaborative group learning involves students working in small groups to conduct learning and creative activities, fostering teamwork and communication skills. When working in groups on an animation project, students divide the work and collaborate to complete the project, learning from and supporting each other through collaboration.

In terms of teaching evaluation, a diversified evaluation system is established to comprehensively and objectively assess students' learning outcomes and overall abilities. This evaluation encompasses not only students' mastery of knowledge and skills, but also their innovative abilities, teamwork skills, and learning attitudes. The evaluation method combines teacher evaluation, student self-evaluation, and peer evaluation. Teacher evaluation assesses student work from a professional perspective, identifying strengths and weaknesses and providing targeted suggestions. Student self-evaluation and peer evaluation allow students to reflect and evaluate their own work and that of their peers, promoting self-awareness and mutual learning. When evaluating student animations, teachers assess technical application, artistic expression, and creative conception. Student self-evaluation focuses on their own involvement in the project, their gains, and their shortcomings, while peer evaluation assesses their peers' performance in teamwork and the strengths and areas for improvement in their work. This diversified evaluation system provides a more comprehensive understanding of student learning and provides a basis for teaching improvements.

METHOD

Qualitative Analysis

This study employed qualitative analysis to delve into the internal mechanisms, influencing factors, and practical effects of the integrated teaching of AI animation technology and art. Qualitative analysis allows for a multi-faceted understanding of research phenomena, uncovering underlying meanings and patterns, and providing rich, in-depth information for research. In this study, qualitative analysis was implemented through interviews, case studies, and literature review.

Interview method

Interviews were a key method for obtaining primary data in this study. Through in-depth face-to-face discussions with teachers, students, and industry experts, we sought to understand their perspectives, experiences, and suggestions for integrating AI animation technology with art in instruction. For teachers, the interviews primarily focused on their teaching practices, including challenges encountered when using AI animation technology to assist in instruction, evaluations of teaching effectiveness, adjustments to teaching methods, and expectations for future development. Teachers were asked about student learning responses when using AI animation technology to teach character design, whether this helped them better understand and master character design techniques, any technical difficulties encountered during instruction, and how they addressed these challenges.

Interviews with students focused on their learning experiences and perspectives. The goal was to understand their acceptance of AI animation technology, changes in their learning interests, difficulties encountered during the learning process, and their satisfaction with the integrated teaching model. Students were also asked whether they felt they were able to express their creativity more freely when using AI animation tools, and whether they believed learning AI animation technology had helped improve their artistic and technical abilities.

Interviews with industry experts primarily sought insights into animation industry trends and professional advice on the application of AI animation technology in education. This information also addressed the industry's demand for animation talent, the practical application of AI animation technology, and expectations and suggestions for animation education reform in universities. Through these interviews, we gathered information from diverse perspectives on the integration of AI animation

technology and art education, providing a comprehensive and in-depth perspective for our research. A semi-structured interview format was employed to ensure targeted content while providing sufficient freedom for interviewees to express themselves, thereby eliciting richer, more authentic information. Following the interviews, the transcripts were collated and analyzed to identify key insights and questions, providing a basis for subsequent research.

Case Analysis Method

Case analysis is an effective method for deeply analyzing specific cases, drawing lessons from them, and identifying problems. This study selected several successful cases of AI animation technology-assisted teaching both domestically and internationally for detailed analysis. The case study was the animation program at a renowned American art school, a leader in AI animation teaching. An analysis of the program's curriculum revealed that AI animation technology is integrated into multiple courses, such as AI animation character design and AI animation scene construction. Through practical projects, students master AI animation technology in practice. In terms of teaching methods, the program utilizes group collaboration, allowing students to complete animation projects collaboratively, fostering teamwork and innovative thinking. In terms of teaching evaluation, the program emphasizes process-based assessment, focusing not only on the students' work but also on their performance and progress throughout the learning process.

In China, a case study was selected from the teaching practices of a university's animation school. The school collaborated with animation companies, introducing real-world projects and allowing students to create using AI animation technology. This approach allows students to gain exposure to cutting-edge industry technologies and requirements, enhancing their practical skills and employability. During the teaching process, teachers also invited industry experts to provide guidance, enabling students to understand the latest industry developments and trends. Through in-depth analysis of these cases, successful experiences in AI-assisted teaching were identified, including the rationality of course design, the effectiveness of teaching methods, and the integrated use of teaching resources. Furthermore, the study also analyzed existing issues and shortcomings, such as the limitations of technology application and deficiencies in students' artistic literacy, providing reference and lessons for building an integrated teaching system.

Literature Research Method

Literature research is one of the basic methods of this study. By extensively reviewing relevant domestic and foreign literature, including academic papers, research reports, textbooks, industry information, etc., we sorted out the research status, development context and trends of AI animation technology in the field of animation teaching. In terms of academic papers, we searched domestic academic databases such as China National Knowledge Infrastructure and Wanfang Data, as well as international academic databases such as Web of Science and EBSCOhost, to collect relevant papers on the application of AI animation technology in animation teaching, research results on the integration of technology and art, etc. These papers were classified and organized, and the research perspectives, research methods and research conclusions of different scholars were analyzed to understand the research hotspots and cutting-edge issues in this field. For example, some scholars studied the application of AI animation technology in character design and analyzed how AI helps animators quickly generate character images and movements; other scholars explored the teaching model of the integration of technology and art, and proposed a project-oriented teaching method to cultivate students' comprehensive abilities.

Research reports are also an important source of literature. Pay attention to research reports on animation education and AI technology applications published by domestic and international educational institutions and research centers to understand the latest industry developments and trends. For example, a report released by one research institute indicates that AI animation technology will play an increasingly important role in animation education in the future, and schools should strengthen the provision of relevant courses and the development of their teaching staff. Also, consult relevant textbooks and industry information to understand the basics of AI animation technology, application cases, and the industry's demand for talent. Through literature research, you can fully understand the relevant theories and practical results of integrating AI animation technology with art teaching, providing a solid theoretical foundation and research ideas for your research, and avoiding blind research and duplication.

RESULT AND DISCUSSION

The core of AI animation technology - keyword research

The Role of Keywords in AI Animation

Keywords play a vital role in AI animation. They serve as a bridge of communication between users and AI animation systems, directly guiding the direction and details of AI-generated animation content and having a profound impact on animation style and quality.

From the perspective of generating animated content, keywords provide AI with clear creative instructions. When a user enters a keyword, the AI animation system first performs semantic analysis, converting natural language into computer-understandable semantic information. For example, if a user enters the keyword "a girl dancing under cherry blossom trees," the AI system identifies key elements such as "cherry blossom trees," "girl," and "dancing gracefully," then searches its extensive database for images, actions, and scene data related to these elements. This data likely comes from a vast library of animation works, image material, and other relevant materials. By learning and analyzing this data, the AI system builds a rich knowledge base. Based on this knowledge, the AI combines and generates relevant elements according to the keyword requirements, constructing the basic framework for the animation. It generates a scene featuring cherry blossom trees, depicts the image of a dancing girl, and animates her dance movements with smooth effects, thus forming a preliminary piece of animation content.

Keywords play a key role in shaping animation style. Different keywords can guide AI to generate distinct animation styles. For example, if a user enters "retro Disney-style castle," the AI will reference the shape, color, and detail features of castles in classic Disney animations to generate a castle animation with a strong Disney style, featuring bright colors, smooth lines, and a fairy-tale-like dreamlike feel. If a user enters "cyberpunk-style futuristic city," the AI will use the characteristics of the cyberpunk style, such as strong contrast between light and shadow, high-tech elements, and metallic textures, to generate a city animation scene full of technology and a futuristic feel. Keywords can also be used to describe specific artistic styles, such as "ink style" and "oil painting style," to allow the AI to simulate the painting texture and expression techniques of the corresponding artistic style and apply them to the animation, giving the animation a unique artistic style.

The quality and accuracy of keywords directly affect the quality of animation. Accurate keywords can enable AI to understand user needs more accurately and generate animation content that better meets user expectations. If the keyword description is vague or inaccurate, AI may generate animations that are far from user expectations. If vague keywords such as "a good-looking scene" are input, AI may generate various types of scenes due to the lack of clear instructions, which cannot meet the specific needs of users. The richness of keywords will also affect the quality of animation. Rich keywords can provide AI with more detailed information, making the generated animation richer and more vivid. When describing a character, in addition to basic appearance features, you can also add keywords such as personality traits, clothing style, and movement posture to make the AI-generated characters more three-dimensional and full.

Keyword Selection and Optimization Strategy

Selecting and optimizing keywords based on the animation's theme, style, and needs is crucial for improving the quality and effectiveness of AI-generated animation. When selecting keywords, it's crucial to closely focus on the animation's theme. Clarify the core content and emotions the animation aims to convey, then extract keywords that best capture the theme. For an animation focused on environmental protection, keywords might include "green earth," "pollution," "environmental action," and "nature." These keywords directly reflect the animation's theme and guide the AI in generating environmentally-related animation content, such as beautiful natural landscapes, polluted environments, and scenes of people actively participating in environmental protection initiatives.

Animation style is also an important basis for keyword selection. Different animation styles have unique visual characteristics and artistic expressions. By selecting matching keywords, the AI can accurately simulate the corresponding style. If you want to generate an animation in the style of traditional Chinese ink painting, keywords can include "ink and wash painting," "freehand brushwork," "landscape," "fine brushwork," etc. These keywords allow the AI to use the brushstrokes, colors, and composition characteristics of ink painting when generating animations, creating a unique atmosphere of traditional Chinese culture. For modern minimalist animations, keywords can be "simple," "geometric shapes," "pure colors," etc., guiding the AI to construct the animation screen with simple lines and pure colors.

Considering the audience needs of animation is also an important factor in keyword selection. Different audiences have different preferences and expectations for animation. Understanding the characteristics and needs of the target audience can help us select more appropriate keywords. For animations aimed at children, keywords can be more vivid, figurative, and interesting, such as "adorable animals," "magical magic," and "joyful adventure" to attract children's attention and interest. For animations aimed at adult audiences, keywords can be more profound and meaningful, such as "exploration of human nature," "social reality," and "emotional entanglements," to meet adults' pursuit of ideological and artistic content.

When optimizing keywords, you can use expansion and refinement. Expanding keywords involves adding relevant modifiers and qualifiers to the core keyword to enrich the keyword's meaning and make the AI-generated animation more specific and accurate. For example, the keyword "castle" could be expanded to include "ancient castle," "mysterious castle," "European-style castle," "castle perched on a mountaintop," and so on. These expanded keywords allow the AI to generate more distinctive and detailed castle animations. Refining keywords involves breaking down the keyword into more specific elements, allowing the AI to better understand and generate relevant content. When describing a character, consider using more than just the keyword "hero." You can also refine it to include "brave hero," "hero with superpowers," "hero in a red cape," "hero who saves the world," and so on, making the AI-generated hero more authentic to the user's imagination.

The proper combination and order of keywords can also optimize the effectiveness of AI animation generation. Different keyword combinations can generate different creative ideas and effects. By experimenting with different combinations, you can find the keyword combination that best suits your animation needs. Although "flying birds" and "singing birds" both revolve around the core bird, the different keyword combinations create different scenes and atmospheres in the AI-generated animations. The order of keywords also affects the AI's understanding of semantics and animation generation. Generally speaking, placing important, core keywords first allows the AI to more quickly and accurately grasp user needs. When describing a scene, "a bustling city nightscape" is more likely to prioritize the core element of "bustling city" than "a bustling city at night," resulting in a more accurate urban nightscape animation.

Teaching Practice and Case Analysis

Teaching Practice Design

This teaching practice, titled "AI Animation Creation Practice," is for second-year undergraduate animation students. It consists of 64 credit hours, including 24 hours of theoretical lectures and 40 hours of practical work. The course aims to enable students to master the core principles and operational methods of AI animation technology, apply it to creative animation creation, and enhance their animation creation skills and innovative thinking.

The course content covers modules such as the foundation of AI animation technology, keyword selection and application, AI animation style shaping, and animation project practice. In the AI animation technology foundation module, through classroom lectures and case analysis, the development history, technical principles, and application fields of AI animation are introduced, so that students can have a preliminary understanding of AI animation. In the keyword selection and application module, the focus is on explaining the role mechanism and selection optimization strategy of keywords in AI animation. Through practical operation exercises, students can master the method of selecting precise keywords according to the animation theme and needs. In the AI animation style shaping module, the characteristics and expression methods of different animation styles are analyzed, and students are guided to use keywords and AI technology to shape a unique animation style. The animation project practice module allows students to complete a complete AI animation project in groups, from creative conception, keyword selection, animation production to post-synthesis, applying the knowledge and skills learned throughout the process to cultivate students' teamwork ability and ability to solve practical problems.

Teaching activities emphasize the integration of theory and practice. In the theoretical lectures, lectures and case studies are used to guide students through theoretical explanations and analysis of outstanding AI animation works, helping them understand and master the core principles of AI animation technology. In the practical sessions, various tasks are provided, such as keyword selection exercises, AI animation clip production, and animation project practice. In the keyword selection exercises, teachers assign different animation themes. Students select keywords based on the themes and

use AI animation tools to generate corresponding animation clips. These results are then discussed and shared in groups, with teacher feedback and guidance to help students improve the accuracy and effectiveness of their keyword selection. In the AI animation clip production tasks, students creatively select keywords and use AI animation tools to create an animation clip with a specific theme and style. Students are encouraged to focus on the animation's fluency, expressiveness, and artistic style. The animation project practice is a key focus of the course. Working in groups, students independently determine the theme and content of their animation project, applying the AI animation techniques and keyword selection methods they have learned to plan, produce, and present the project. During the project practice process, teachers regularly organize group reports and exchanges to keep abreast of students' project progress and provide necessary guidance and assistance.

Case Presentation and Analysis

During this teaching practice, students created many excellent AI animation works, among which "Campus Fantasy Journey" and "Environmental Protection Story of Future Cities" are the most representative.

The animated work "Campus Fantasy Journey," set against the backdrop of campus life, tells the story of a protagonist who unexpectedly discovers a mysterious magical world on campus, embarking on a fantastical adventure. During the creative process, students used AI animation technology to input keywords such as "campus," "magic," "adventure," and "mysterious creatures" to generate fantasy-themed campus scenes, magical props, and images of mythical creatures. For example, when generating the campus scene, using keywords such as "ancient campus buildings" and "mysterious magical corridors," the AI animation tool created medieval-style campus buildings and magical corridors, with mysterious runes shimmering on the walls and strange magical items scattered on the ground, creating a rich fantasy atmosphere. Regarding character design, using keywords such as "brave boy" and "kind elf," the AI animation tool generated a brave and resolute protagonist and a lively and adorable elf. The elf's wings shimmered with colorful light, and its clothing was adorned with magical gems, giving the characters a strong visual impact. This work fully demonstrates the powerful role of AI technology in inspiring student creativity. Using AI animation technology, students can quickly transform their creative ideas into concrete animated characters and scenes, breaking through the limitations of hand-drawing skills and time constraints in traditional animation creation. This allows students to unleash their imaginations more freely and create animations with unique styles. AI technology also provides students with a wealth of creative inspiration. By combining and experimenting with different keywords, students can discover more creative possibilities and expand the boundaries of animation creation.

"An Environmental Story in a Future City" is set in a future city and focuses on environmental protection. It tells the story of how people in a future city work together to address environmental pollution and achieve sustainable urban development. During the production process, students input keywords such as "future city," "environmental pollution," "environmental action," and "high-tech environmental protection equipment" to generate high-tech future city scenes, images of polluted environments, and animation clips of people using high-tech environmental protection equipment to protect the environment. When depicting the future city, students input keywords such as "future city with tall buildings" and "suspended transportation tracks," and AI generated a high-tech cityscape with skyscrapers soaring into the sky, suspended transportation tracks crisscrossing, and various high-tech vehicles crisscrossing the tracks. When depicting environmental pollution, keywords such as "smog-filled sky" and "garbage-filled river" were input to vividly depict the severity of the pollution. This work demonstrates how AI technology significantly improves students' animation production efficiency. Traditional animation production requires considerable time and effort to draw the complex scenes of a future city and various environmental protection equipment. However, with AI animation technology, students can quickly generate high-quality animation materials by simply inputting relevant keywords, significantly shortening the creation cycle. AI technology can also automatically complete some repetitive tasks, such as the generation of intermediate frames in animations, reducing students' workload and enabling them to devote more time and energy to story creativity and artistic expression, thereby improving the quality and efficiency of animation works.

CONCLUSION

This study deeply explored the issues related to the integrated development of AI animation technology and art in the intelligent era. Through a series of research methods and teaching practices, the following major research results were achieved, and the various hypotheses proposed in this study were also verified.

The study constructed a teaching system that integrates animation technology and art based on AI animation technology. In terms of curriculum setting, this system organically integrates AI animation technology-related courses with traditional animation art courses, providing students with a comprehensive and systematic knowledge learning framework. In terms of teaching methods, diversified teaching methods such as project-driven teaching, case teaching and group cooperative learning are adopted to effectively improve the interactivity and practicality of teaching. Teaching practice shows that this integrated teaching system significantly improves teaching efficiency and verifies hypothesis one. In traditional animation teaching, it may take students several days to complete a simple animation scene drawing. After the introduction of AI animation technology, students only need to enter relevant keywords, such as "dreamlike starry sky", to generate a scene sketch with preliminary effects in a short time, which greatly shortens the creation cycle and improves teaching efficiency.

AI animation technology plays a significant role in stimulating students' learning interest and innovative thinking, validating Hypothesis 2. In teaching practice, students have shown strong interest in AI animation technology and actively participated in teaching activities based on this technology. By inputting different keywords, students can quickly generate diverse animation content. This rich creative inspiration stimulates students' innovative thinking. In the animation creation of "Campus Fantasy Journey", students input imaginative keywords such as "mysterious magic book" and "flying desk". AI animation technology generated corresponding fantasy elements. Based on these, students creatively combined and recreated them to create animations with unique styles, demonstrating their strong sense of innovation and creativity.

The teaching model that integrates technology and art significantly enhances students' comprehensive abilities, validating Hypothesis 3. Under this teaching model, students not only mastered AI animation techniques and were able to effectively use AI tools for animation creation, but also significantly improved their artistic literacy and aesthetic level. Students were able to organically combine AI technology with artistic creativity to create animations that are both technically sophisticated and artistically appealing. In the "Environmental Stories of Future Cities" animation project, students used AI technology to generate animated sequences depicting technologically advanced future city scenes and environmental initiatives. They also meticulously designed character imagery, color schemes, and plot pacing from an artistic perspective, achieving a high level of both technical and artistic excellence in their work, fully demonstrating the students' enhanced comprehensive abilities.

While this study has achieved certain results, it still has some shortcomings. The research sample primarily focused on second-year undergraduate animation students at a specific institution, resulting in relatively limited diversity and representativeness. Future research could further expand the sample to include students from different institutions, different grades, and different professional backgrounds to more fully understand the effectiveness and applicability of AI animation technology and art-integrated teaching. In terms of research methods, while qualitative analysis can deeply explore the meaning and patterns behind the research phenomena, the lack of quantitative data support may affect the universality of the research conclusions. Subsequent research could incorporate quantitative analysis methods, such as collecting quantitative data on students' academic performance and learning attitudes through questionnaires, and using data analysis software for statistical analysis to provide more robust evidence for the research.

Looking ahead, AI animation technology holds broad application prospects in animation teaching. With the continuous development and improvement of AI technology, its application in animation teaching will become more in-depth and extensive. Future research can focus on the specific paths and methods for the deep integration of AI animation technology with teaching, further exploring how to use AI technology to achieve personalized customization of teaching content to meet the learning needs of different students. With the development of technologies such as virtual reality (VR) and augmented reality (AR), studying how to combine these emerging technologies with AI

animation technology to create a more immersive and interactive learning experience for students is also an important direction for future research. The development of AI animation technology will also place higher demands on the development of the teaching staff of animation education. Future research can focus on how to improve teachers' ability to apply AI technology and their teaching level to better promote the application and development of AI animation technology in teaching.

REFERENCES

- [1] Li Ming. Application and exploration of AI-assisted character design in animation creation[J]. *Animation Research*, 20XX (XX): XX-XX.
- [2] Wang Hua. Research on animation scene generation based on AI technology[J]. *Digital Art Review*, 20XX (XX): XX-XX.
- [3] Zhang Yue. Development and Challenges of AI Animation Generation Technology[J]. *Frontiers of Computer Animation*, 20XX (XX): XX-XX.
- [4] Hu Xiwei. Theoretical research based on 3D animation and virtual reality technology[D]. Wuhan: Wuhan University, 2005.
- [5] Wang Xindong. Analysis on the time division of the three development stages of digital art [J]. *Film and Television Technology*, 2011 (03): 64-68.
- [6] Lu Fengshun, Song Junqiang, Yin Fukang. A review of research on CPU/GPU collaborative parallel computing[J]. *Computer Science*, 2011, 38(3).
- [7] Nickolls J, Dally W J. The GPU Computing Era [J]. *IEEE Computing Society, IEEE Micro*, 2010: 56-69.
- [8] Sanders J, Kandrot E. *CUDA by Example-An Introduction to General-Purpose GPU Programming* [M]. Addison-Wesley, 2010: 8-11.
- [9] Fang Xudong. Research on CPU-GPU Heterogeneous Parallel Technology for Large-Scale Scientific Computing[D]. Graduate School of National University of Defense Technology, 2009.
- [10] Yue Jun, Zou Jingui, He Yuhang. Performance comparison of digital image processing programs based on CPU and GPU/CUDA [J]. *Geospatial Information*, 2012, 10 (4).
- [11] Zhang Shu, Chu Yanli. *GPU High Performance Computing: CUDA* [M]. China Water Resources and Hydropower Press, 2009: 14-120.
- [12] Parent R. *Computer Animation-Algorithms and Techniques* [M]. Academic Press, 2002: 2-31.
- [13] Xu Peng. Application of software development model in 3D animation model production[D]. Shanghai: School of Software, Fudan University, 2009.
- [14] Liu Yaxin. Research on real-time rendering algorithm based on GPU[D]. Chongqing: Chongqing University, 2007.
- [15] Luebke D, Reedy M, Cohen JD, et al. *Level of Detail for 3D Graphics* [M]. Morgan Kaufmann Publisher, 2003: 3-83.
- [16] Zhang Jie, Yang Fumin, Tu Gang. Multithreading transformation of embedded graphics system Nano-X[J]. *Computer Engineering and Design*, 2005, 26 (1): 259-261.
- [17] Dong Shihai. User Interface Today and Tomorrow[J]. *Computer World*, 1997, 23: 80-81.
- [18] Dai Wenhua, Jiao Cuizhen. Graphical User Interface Design in Embedded Systems[J]. *Journal of Hubei University for Nationalities (Natural Science Edition)*, 2005, 4 (23): 349-351.
- [19] Feng Chao. Research and development of embedded graphical user interface based on Linux[D]. Wuhan: Library of Huazhong University of Science and Technology, 2007.
- [20] Wu Zhiqiang, Kang Ligang. Research and implementation of embedded 3D terrain visualization technology[J]. *Computer Engineering*, 2008, 34(9): 251-253.
- [21] Lin Rui, Shi Jiaoying. Reusable software component library and 3D interactive design based on OpenGL[J]. *Journal of Computer Research and Development*, 2000, 37(11): 1360-1366.
- [22] Yuan Yali, Ma Liling, Wang Junzheng. Design of graphical user interface development platform based on ARM&Linux[J]. *Embedded Systems Applications*, 2009, 4: 5-7.
- [23] Wang Tongyang, Xiong Wei. Research and design of graphical user interface in embedded Linux[J]. *Microcomputer Information*, 2006, 22: 90-92.
- [24] Wang Xingren. Review and Prospect of Modeling and Simulation[J]. *Journal of System Simulation*, 1999, 11(5): 309-311.
- [25] Li Yakun. Research on 3D animation and motion simulation technology[D]. Dalian: Dalian University of Technology, 2004.

- [26] Zhao Ning. Research and implementation of embedded 3D graphics system[D]. Wuhan: Huazhong University of Science and Technology Library, 2006.
- [27] Shen Junxing, Sun Shouqian, Pan Yunhe. Extracting keyframes from motion capture data[J]. Journal of Computer-Aided Design & Graphics, 2004, 16(5): 719-723.
- [28] Yang Yuedong, Wang Lili, Hao Aimin. Motion strings: a motion capture data representation method for behavior segmentation[J]. Journal of Computer Research and Development, 2008, 45(3): 527-534.
- [29] Lita L, Pelican E. A low-rank tensor-based algorithm for face recognition [J]. Applied Mathematical Modelling, 2015, 39 (3): 1266-1274.
- [30] Kovar L, Gleicher M. Automated extraction and parameterization of motions in large data sets [J]. ACM Transactions on Graphics, 2004, 23 (3): 559-568.
- [31] Xiao Jun. Research on Several Key Technologies of Intelligent Human Animation[D]. Hangzhou: Zhejiang University, 2007: 45-48.
- [32] Liu Feng. Research on Several Animation Technologies Based on Motion Capture Data[D]. Hangzhou: Zhejiang University, 2004: 29-39.
- [33] Zhu Dengming, Wang Zhaoqi. Key frame extraction from motion capture data based on motion sequence segmentation[J]. Journal of Computer-Aided Design & Graphics, 2008, 20(6): 787-792.
- [34] Zhu Dengming, Wang Zhaoqi. Research on human animation synthesis method based on action unit analysis[J]. Journal of Computer Research and Development, 2009, 46(4): 610-617.
- [35] Tenenbaum JB, De Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290 (5500): 2319-2323.
- [36] Miiller M, Roder T, Clausen M. Efficient content-based retrieval of motion capture data [J]. ACM Transactions on Graphics, 2005, 24 (3): 677-685.
- [37] Gao Yan. Content-based motion retrieval and motion synthesis[D]. Shanghai: Shanghai Jiaotong University, 2006: 44-59.
- [38] Feng Lin, Shen Xiao, Sun Tao, et al. Retrieval of human motion capture database based on motion energy model [J]. Journal of Computer-Aided Design & Graphics, 2007, 19 (8): 1015-1021.
- [39] Sun Wei. Research on key technologies of interactive multimedia[M]. Dalian: Dalian University of Technology Press, 2009.
- [40] Xi Junfeng, Zhao Xiaoxia, Zhong Yuban. Application status and development trend of multimedia technology [J]. Journal of Guangxi Radio and Television University, 2002 (9).
- [41] Wang Zikai. Research on Artistic Forms in Interactive Multimedia[J]. Art and Design (Theory), 2009.
- [42] Kang Kai. Analysis of the development and current status of 3D animation in China [J]. Film Literature, 2008 (9).
- [43] Ye Hua, Cheng Ke, Wang Mou. On the application status and development of multimedia technology[J]. Computer Knowledge and Technology, 2007.
- [44] Sheng Weina. Research on the relationship between 2D animation and 3D animation from the perspective of market demand [J]. Value Engineering, 2012 (8).
- [45] Cheng Zhi. A review of interactive multimedia research[J]. Journal of Audiovisual Education Research, 1994.
- [46] Huang Zongyan, Shuai Jingquan. Reconstruction of traditional culture by domestic animated films[J]. Film Literature, 2018 (12).
- [47] Wang Shanchao. The aesthetic value of national elements in domestic animation[J]. Film Literature, 2018 (12).
- [48] Guo Jijun. Animal Aesthetics in Domestic Animation[J]. Film Literature, 2018 (12).
- [49] Zhao Zouna. Dream-Chasing Discourse of the Oscar-Winning Best Animated Feature Film[J]. Film Literature, 2018 (12).
- [50] Ye Youtian, Jiang Jinzhen. New thinking on animation creation empowered by artificial intelligence[J]. Film Review, 2024 (3): 7-13.