Chitosan as a Bone Graft Biomaterial Enhances Osteogenesis after Tooth Extraction: A Systematic Literature Review
Main Article Content
Abstract
Tooth extraction often results in changes to the dimensions of the alveolar ridge due to resorption, which can affect the stability and comfort of dental prostheses. Socket preservation efforts are crucial for preventing bone resorption and supporting the regeneration of both soft and hard tissues. Chitosan, a biomaterial derived from crustacean exoskeletons, has shown potential as a scaffold and graft material for bone regeneration. With its biocompatible, biodegradable, and antibacterial properties, chitosan supports osteogenesis through its osteoconductive, osteoinductive, and osteogenic capabilities. Additionally, the cationic nature of chitosan allows interaction with bacterial cell membranes, preventing infection and facilitating the transformation of macrophages from pro-inflammatory to anti-inflammatory types. This systematic literature review evaluates the benefits of chitosan in bone regeneration after tooth extraction. The study employed a PRISMA flow diagram to select relevant literature, resulting in 15 studies meeting the inclusion criteria. The findings indicate that chitosan significantly enhances osteoblast activity, accelerates new bone formation, and supports bone healing during the inflammatory, reparative, and remodeling phases without toxicity or risk of disease transmission. Thus, chitosan presents an innovative solution for bone regeneration in clinical dental practice. This study demonstrates that chitosan is an effective natural material for supporting bone healing after tooth extraction. It helps increase bone cell activity, speeds up new bone growth, and prevents infection. These findings support the use of chitosan as a safe and promising option for improving dental bone regeneration.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
![]()
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
1. Tandry E., Samantha, Nhan Nv., Sim m., Florenly.2020. Effectiveness of Topical Cold Pressed Virgin Coconut Oil Administration on Accelerating Post-Extraction Healing Between Maxilla and Mandible of Male Wistar Strain Rats Clinically. Syntax, 2(7).
2. Chappuis, V., Araújo, MG, & Buser, D. 2017. Clinical relevance of dimensional bone and soft tissue alterations post‐extraction in esthetic sites. Periodontology 2000, 73(1), 73-83.
3. Landsberg, C., Bender, O., Weinreb, M., Wigler, R., Chackartchi, T., Matalon, S., & Weinberg, E. 2020. Postextraction Ridge Width Alterations Following Socket Seal Surgery—A Retrospective Study. Applied Sciences, 11(1), 324.
4. Wahjuningrum DA, Cahyani F, Setiawan F, Dianti E, Sampoerno G, Saraswati W, Nurdianto AR, Bhardwaj A. Chitosan as Bone Scaffold and Graft Materials for Bone Regeneration. Conservative Dentistry Journal E-Journal. 2022;(18): 542-9.
5. Barone, A., Toti, P., Quaranta, A., Alfonsi, F., Cucchi, A., Negri, B., Di Felice, R., Marchionni, S., Calvo‐Guirado, J.L., Covani, U . and Nannmark, U., 2017. Clinical and Histological changes after ridge preservation with two xenografts: preliminary results from a multicentre randomized controlled clinical trial. Journal of Clinical Periodontology, 44(2), pp.204-214.
6. Kmiec, M., Pighinelli, L., Tedesco, MF, Silva, MM, & Reis, V. 2017. Chitosan-properties and applications in dentistry. Adv Tissue Eng Regen Med Open Access, 2(4), 00035.
7. Park, SY, Kim, KH, Kim, S., Lee, YM and Seol, YJ, 2019. BMP-2 gene delivery-based bone regeneration in dentistry. Pharmaceutics, 11(8), p.393.
8. Bernhard, S., Hug, S., Stratmann, A., E., P., Erber, M., Vidoni, L., Knapp, C., L., Thomas, B., D., Fauler, M ., Nilsson, B., Ekdahl, K., N., Fohr, K., Braun, C., K., Wohlgemuth, L., Lang, M., H., Messerer, D., A., C. Interleukin 8 elicits rapid physiological changes in neutrophils that are altered by inflammatory conditions. Journal of Innate Immunity. 2020; 13: 225-241. DOI: 10.1159/000514885
9. Pfeinffenberger, M., Damerau, A., Lang, A., Buttgereit, F., Hoff, P., Gaber, T. Fracture healing research–shift towards in vitro modeling? Biomedicines. 2021; 9: 748, https://doi.org/10.3990/biomedicines9070748.
10. Medhat, D., Rodriguez, CI, Infante, A. Immunomodulatory effects of MSCs in bone healing. International Journal of Molecular Science. 2019; 20:1-17
11. Setiawan, F., Wahjuningrum, D., A., Utomo, D., N. The property of mesenchymal stem cells (MSCs) secretome as a bone stimulator candidate in regeneration of injured bone. Malaysian Journal of Medicine and Health Sciences. 2021; 17(1): 98-106.
12. Bahney, C., S., Zondreyan, R., L., Allison, P. Cellular Biology of Fracture Healing. Journal of Orthopedic Research. 2019; 37: 35-50. DOI 10.1002/jor.24170.
13. Houschyar, K., S., Tapking, C., Borrelli, M., R. Wnt pathway in bone regeneration – what do we know so far. Front. Cell Dev. Biol. 2019: 6; 170. DOI: 10.3389/fcell.2018.00170Bao.
14. Bao, Q., Chen, S., Qin, H. An appropriate Wnt/ β-catenin expression level during the remodeling phase is required for improved bone fracture healing in mice. Scientific Reports, 2017; 7: 2695. DOI:10.1038/s41598-018-02705-0.
15. Gugliandolo, A., Fonticuli, L., Trubiani, O. oral bone tissue regeneration: mesenchymal stem cells, secretome, and biomaterials. Int J Mol Sci. 2021; 22: 5236. https://doi.org/10.3990/.
16. Wahjuningsih, E., & Sularsih, S. (2015). Expression of bone morphogenetic protein-2 after using chitosan gel with different molecular weight on wound healing process of dental extraction.
17. Gani, A., Yulianty, R., Supiaty, S., Rusdy, M., Dwipa Asri, G., Eka Satya, D., ... & Achmad, H. (2022). Effectiveness of Combination of Chitosan Gel and Hydroxyapatite From Crabs Shells (Portunus pelagicus) Waste as Bonegraft on Periodontal Network Regeneration Through IL‐1 and BMP‐2 Analysis. International Journal of Biomaterials, 2022(1), 1817236.
18. Souto-Lopes, M., Grenho, L., Manrique, Y., Dias, M. M., Lopes, J. C. B., Fernandes, M. H.,& Salgado, C. L. (2024). Bone regeneration driven by a nano-hydroxyapatite/chitosan composite bioaerogel for periodontal regeneration. Frontiers in Bioengineering and Biotechnology, 12, 1355950.
19. Dewi, R. K., Oktawati, S., Gani, A., Suhartono, E., Noor, Z. H., Hamrun, N., ... & Oktiani, B. W. (2024). Chitosan black soldier fly (Hermetia Illucens) pupae can improve macrophages and fibroblast post-extraction teeth. Journal of Dentomaxillofacial Science, 9(3), 166-171.
20. Maula, N. M., Waty, M. U., Dewi, R. K., Oktawati, S., Gani, A., Suhartono, E., & Ganesh, R. (2025). The impact of chitosan derived from black soldier fly (Hermetia illucens) pupae on bone remodeling post-tooth extraction: an in vivo study. Padjadjaran Journal of Dentistry, 37(1), 59-68.
21. Rusdy, H., Dohude, G. A., Putro, B. A. C., Syadana, N. T., & Kevin, S. (2024). Effect of Black Crab (Scylla Serrata) Chitosan Gel on the Three-Dimensional Socket Response and Fibroblasts after Tooth Extraction in Rattus Norvegicus. Journal of Hunan University Natural Sciences, 51(3).
22. Hendrijantini, N., Rostiny, N. I. D. N., Kuntjoro, M., Young, K., Shafira, B., & Pratiwi, Y. (2017). The Effect of a combination of 12% spirulina and 20% chitosan on macrophage, PMN, and lymphocyte cell expressions in post extraction wound. Dental Journal (Majalah Kedokteran Gigi), 50(2), 106-110.
23. Siti Rochmah, Y. (2018). Analisa Gel Kombinasi Platelet Rich Plasma Dan Chitosan Terhadap Peningkatan Jumlah Osteoblas Sebagai Bone Regeneration Pada Luka Pasca Ekstraksi Gigi Tikus Wistar. ODONTO: Dental Journal. https://doi.org/10.30659/ODJ.5.2.89-96
24. Ragab, M., Salem, Z. A., & Shawkat, S. (2025). Evaluation of the Healing Potential of Silicon Carbide/Bioactive Glass/Carboxymethyl Chitosan Nanocomposites on Extraction Socket in Albino Rats. Egyptian Journal of Histology, 48(3), 1180-1198.
25. Gharib, H. S., Abdel Hamid, H. M., & Hamza, S. A. (2023). Histological And Immunohistochemical Evaluation Of Chitosan–Nanohydroxyapatite Scaffold On Regenerative Bone Healing In Osteoporotic Rabbits. Egyptian Dental Journal, 69(3), 1905-1917.
26. Dewi, R., Oktawati, S., Gani, A., Suhartono, E., Hamrun, N., Maula, N. M., & Ganesh, R. (2025). Chitosan Black Soldier Fly (Hermetia Illucens) Pupae Improves Osteoblasts and Decreases Osteoclasts Post-Tooth Extraction: In Vivo Studies. Available at SSRN 4783357.
27. Putranto, R., Abdurrohman, M. M. S., & Grati, C. O. (2022). Effects Of Clamshell (Amusium Pleuronectes) Chitosan Extract On The Increase Number Of Osteoblast Of The Alveolar Bone Under Periodontitis. Jurnal Medali, 4(3), 1-5.
28. Sukpaita, T., Chirachanchai, S., Chanamuangkon, T., Pimkhaokham, A., & Ampornaramveth, R. S. (2023). Alveolar ridge preservation in rat tooth extraction model by chitosan-derived epigenetic modulation scaffold. Journal of Prosthodontic Research, 68(2), 299-309.
29. Hendrijantini, N., Rostiny, R., Kuntjoro, M., Sidharta, K., Wiyono, D. S. P., Anindyanari, A., & Salim, S. (2018). The effect of combination spirulina–chitosan on angiogenesis, osteoclast, and osteoblast cells in socket models of hyperglycemic Rattus norvegicus. Contemporary Clinical Dentistry, 9(4), 582-586.
30. Salim, S., & Kuntjoro, M. (2015). Efek Kombinasi Spirulina Kitosan Untuk Preservasi Soket Terhadap Osteoblas, Osteoklas Dan Kepadatan Kolagen: Effect Spirulina Chitosan Combination As A Socket Preservation Toosteblast, Osteoclast, And Collagen Density. Dentika: Dental Journal, 18(3), 225-231.