

e-ISSN:

; p-ISSN:

Implementation of Bandwidth Management with Hierarchical Token Bucket (Htb), Per Connection Queue (Pcq) and Layer 7 Protocol Methods Using a Mikrotik Router

Implementasi Manajemen Bandwidth dengan Metode Hierarchical Token Bucket (Htb), Per Connection Queue (Pcq), dan Layer 7 Protokol Menggunakan Router Mikrotik

I Wayan Desky Arianata¹, Gerson Feoh^{2*}, Putu Wida Gunawan³

^{1,2,3}Teknik Informatika, Universitas Dhyana Pura, Bali, Indonesia

(*) Corresponding Author: gerson.feoh@undhirabali.ac.id

Article info	
Keywords:	Abstract
bandwidth	Computer Lab 3 of Universitas Dhyana Pura utilizes Internet as a
management, HTB,	resource for learning. However, the network in this computer lab has not
PCQ, Layer 7	implemented bandwidth management in distributing the Internet
Protokol	connection for the Clients using personal computers (PC). Without
	bandwidth management, many PCs tended to use the Internet with
	irregular connection bandwidth, which could render other PCs to not get
	adequate bandwidth. This might cause instability for each Client that
	could cause improper use of Internet, such as access to websites not
	supposed to be used for learning, which could cause ineffective use of
	Internet. To optimize the Internet access, bandwidth management using
	Hierarchical Token Bucket (HTB) method was needed to group the queue
	to be more structured, which was to be further supported by the Per
	Connection Queue (PCQ) method to equalize the Internet connection
	distributed to Clients, as well as Layer 7 Protocol method used to filter
	the web access control. Bandwidth management and web access control
	filtering are expected to enable all PC stations to access the Internet
	smoothly and with greater stability. Both are also expected to increase the
	effectiveness of learning in Computer Lab 3 of Universitas Dhyana Pura.
Kata kunci:	Abstrak
Manajemen	Laboratorium komputer 3 Universitas Dhyana Pura menggunakan internet
Bandwidth, HTB,	sebagai sarana pembelajaran. Tetapi pada jaringan Laboratorium
PCQ,Layer 7	komputer 3 belum menerapkan manajemen <i>bandwidth</i> dalam membagi
Protokol	koneksi internet kepada komputer Client. Tanpa adanya manajemen
	bandwidth banyak komputer yang menggunakan internet secara tidak
	beraturan sehingga menyebabkan komputer yang lain tidak mendapat
	jatah bandwidth. Karena koneksi internet yang kurang merata, hal ini
	menyebabkan terganggunya kestabilan koneksi setiap Client sehingga
	berdampak pada terganggunya proses dalam pelajaran. Belum adanya
	manajemen bandwidth juga menyebabkan penggunaan internet yang tidak
	sesuai seperti akses website yang tidak semestinya dipakai dalam
	pelajaran membuat tidak efektifnya <i>internet</i> . Maka untuk memaksimalkan
	akses <i>internet</i> diperlukan manajemen <i>bandwidth</i> dengan metode
	Hierarchical Token Bucket (HTB) untuk pengelompokan queue yang

e-ISSN:

; p-ISSN:

lebih terstruktur kemudian didukung oleh metode *Per Connection Queue* (PCQ) untuk meratakan koneksi *internet* yang diberikan kepada *Client* dan metode *Layer* 7 Protokol digunakan untuk *filtering web access control*. Dengan adanya manajemen *bandwidth* dan *filtering web access control* diharapkan semua komputer dapat menggunakan *internet* dengan lancar dan stabil serta dengan adanya manajemen *bandwidth* dan *filtering web access control* diharapkan dapat meningkatkan efektifitas dalam pengajaran di Laboratorium komputer 3 Universitas Dhyana Pura.

PENDAHULUAN

Teknologi jaringan komputer telah merambah ke berbagai bidang dan segi kehidupan. Hal tersebut dapat dilihat dari penggunaan jaringan komputer baik oleh instansi, kelompok maupun individu. Teknologi jaringan komputer menjadi hal yang sangat penting karena banyaknya kelebihan yang dimiliki antara lain mudah dan efisien. Namun demikian perlu adanya kinerja jaringan komputer yang mumpuni agar manfaatnya dapat dirasakan secara maksimal. Oleh sebab itu, operator jaringan di sebuah instansi/perusahaan bersama pihak *Internet Service Provider* (ISP) sebagai penyedia layanan jasa harus mampu menyediakan kinerja jaringan komputer yang baik sehingga dapat memberi kepuasan dan kenyamanan bagi pengguna layanan jaringan *internet*.

Penerapan manajemen bandwidth dalam suatu jaringan semakin di perlukan. Hal ini dapat dilihat dari hasil observasi awal jaringan internet tanpa manajemen bandwidth. Manajemen bandwidth mengacu pada implementasi aturan dalam pembagian jaringan untuk menyediakan layanan yang lebih baik pada trafik jaringan tertentu melalui teknologi yang berbeda-beda. Salah satu metode dalam penanganan manajemen bandwidth di jaringan ini menggunakan metode Hierarchical Token Bucket (HTB), didukung oleh metode Per Connection Queue (PCQ) dan Layer 7 Protokol pada mikrotik. Cara kerja dari metode HTB sendiri, membagi bandwidth kedalam beberapa kelas, yang mana terdapat dua kelas utama yaitu parent dan child, metode ini memungkinkan administrator untuk membagi bandwidth berdasarkan besar bandwidth yang diminta pelanggan. Dari penerapan metode HTB dapat diambil kesimpulan bahwa bandwidth yang didapat antar user menjadi lebih stabil dan merata Lukman et al., (2019). Implementasi manajemen bandwidth banyak bergantung pada sistem HTB. HTB memungkinkan kita membuat queue menjadi lebih terstruktur, dengan melakukan pengelompokan-pengelompokan yang bertingkat. Setelah melakukan metode HTB maka akan dilakukan metode PCQ untuk pembagian bandwidth secara dinamis dan merata pada *Client*. Metode PCQ merupakan metode yang bekerja dengan sebuah algoritma yang akan membagi bandwidth secara merata ke sejumlah Client yang aktif. Setelah melakukan metode PCQ maka kita akan melakukan pencegahan akses ke beberapa website yang tidak di gunakan dalam pelajaran di laboratorium pada Layer 7 protocol di mikrotik supaya terjaganya fokus mahasiswa saat belajar di laboratorium. Masalah yang terjadi di laboratorium komputer 3 adalah sulitnya mengawasi dan mengatur bandwidth tiap komputer sehingga pembagian bandwidth tiap komputer tidak merata.

Terkait dengan masalah di Laboratorium 3, penelitian dengan metode HTB sudah dilakukan oleh beberapa peneliti sebelumnya. Salah satunya pada penelitian dengan judul manajemen *Bandwidth* Menggunakan Metode HTB di Farid.net Lukman et al., (2019) dan penelitian lain dengan metode HTB dilakukan yang berjudul dengan membuat Analisis QoS pada Jaringan *Internet* di Universitas Bina Insan Lubuklinggau Menggunakan Metode HTB oleh Armanto and Daulay, (2020) dengan membuat Analisis QoS Pada Jaringan *Internet* di Universitas Bina Insan Lubuklinggau Menggunakan Metode HTB. Berdasarkan perkembangan penelitian diatas metode HTB dengan menggunakan *Router* Mikrotik

e-ISSN:

; p-ISSN:

mampu memberikan manajemen *bandwidth* yang lebih baik pada jaringan. Dari penelitian terdahulu diatas bisa menjadi solusi untuk laboratorium 3, maka penulis tertarik menerapkan HTB dalam studi kasus Laboratorium Komputer 3 Universitas Dhyana Pura Karena Jaringan Laboratorium Komputer 3 Universitas Dhyana Pura belum memiliki sistem yang dapat menangani kejadian tersebut sehingga pembagian *bandwidth* dalam penerapanya tidak bisa membagi secara optimal dan merata ke setiap perangkat komputer yang terhubung.

Laboratorium 3 komputer Universitas Dhyana Pura merupakan laboratorium untuk media praktikum pembelajaran programing dan multimedia yang sering menggunakan *internet*. Jaringan *internet* Laboratorium Universitas Dhyana Pura menggunakan *Router* Mikrotik yang menerapkan *Dynamic Host Configuration Protocol* (DHCP). Berdasarkan wawancara yang penulis lakukan kepada Kepala Bagian *Information and Communications Technology* (ICT) Universitas Dhyana Pura, ditemukan bahwa sulitnya mengakses *internet* ketika jumlah *user* pada saat beban puncak karena pembagian *bandwidth* yang tidak sesuai untuk setiap *user*. Berdasarkan permasalahan diatas, maka diperlukan sebuah penerapan manajemen *bandwidth* yang dapat membantu mengatasi permasalahan sekaligus memudahkan dalam pengelolaan koneksi dalam jaringan.

Berdasarkan latar belakang diatas maka penulis tertarik mengajukan penelitian dengan judul" Implementasi Manajemen *Bandwidth* dengan Metode *Hierarchical Token Bucket* (HTB), *Per Connection Queue* (PCQ) dan *Layer 7* Protokol Menggunakan *Router* Mikrotik Studi Kasus: Laboratorium Komputer 3 Universitas Dhyana Pura"

METODE

Metode Pengumpulan Data

Dalam penelitian ini, penulis menggunakan metode pengumpulan data premier dan data sekunder.

1. Data Primer

Data primer dalam penelitian ini didapatkan melalui data paket *tracer* dan proses wawancara di departemen *Information and Communications Technology* (ICT) Universitas Dhyana Pura

2. Data Sekunder

Data sekunder dalam penelitian ini didapatkan melalui jurnal penelitian sebelumnya dan informasi dari *internet* mengenai metode *Hierarchical Token Bucket* (HTB), *Per Connection Queue* (PCQ) dan *Layer* 7 Protocol. Metode Analisis dan Perancangan

Metode Analisa dan Perancangan

Penelitian ini menggunakan metode analisis dan perancangan dengan konsep SDLC. Dengan tahap analisis, desain, implementasi, testing dan *maintenance*.

Analisis Kebutuhan Penelitian

Tahap analisis ini menggunakan hasil dari pengumpulan data dari Implemetasi yang akan dibuat. Kebutuhan implementasi pada tahap ini didefinisikan menjadi kebutuhan fungsional dan kebutuhan non-fungsional sistem.

e-ISSN:

; p-ISSN:

- 1. Kebutuhan sistem fungsional:
 - a. Input yaitu, Manajemen bandwidth dengan HTB, PCQ dan Layer 7 Protocol.
 - b. Proses yaitu, Penerapan HTB, PCQ dan Layer 7 Protocol di Mikrotik
 - c. *Output* yaitu, *Bandwidth* total Laboratorium Komputer 3 dan Kuota *bandwidth* masing-masing *Client*.
- 2. Kebutuhan sistem non-fungsional:
 - a. Kebutuhan perangkat keras
 - Spesifikasi Router (Mikrotik)
 - Mikrotik RB951Ui-2HnD 5Port
 - b. Kebutuhan perangkat lunak
 - Winbox v3.18
 - Command Prompt

Desain Topologi Jaringan

Desain topologi jaringan Laboratorium komputer 3 Universitas Dhyana Pura adalah sebagai berikut. Jaringan *internet* di hubungkan dari ruangan *Information Communication Technology* (ICT) menggunakan *Router* Mikrotik melalui kabel *Fiber* ke hub pembagian *internet* yang ada di gedung D, kemudian mengarah ke *Router* Mikrotik kusus Laboratorium komputer 3 menggunakan Kabel *Local Area Network* (LAN) kemudian dihubungkan ke hub untuk pembagian jaringan ke masing-masing komputer yang ada diruangan Laboratorium komputer 3 dengan gambar 1.

Gambar 1. Desain Topologi Jaringan Laboratorium 3 Universitas Dhyana Pura

Implementasi Manajemen Bandwidth

1. Melakukan upaya manajemen *bandwidth* pada jaringan komputer di laboratorium komputer Universitas Dyana Pura dengan metode HTB, PCQ dan *Layer 7* Protocol.

e-ISSN: ; p-ISSN:

2. Melakukan penelitian tentang pengaruh manajemen *bandwidth* dengan metode HTB terhadap *user* yang melakukan *download*, *upload* dan *browsing* di laboratorium komputer Universitas Dhyana Pura.

Testing Manajemen Bandwidth

- 1. Pengujian *download*, *upload* dan *browsing* pada masing-masing *Client* yang sudah di bagi oleh *winbox* perPC
- 2. Memonitoring *Client* pada *winbox* apakah sudah sesuai dengan pengaturan pembagian *bandwidth* yang sudah ditentukan oleh admin

Maintenance Manajemen Bandwidth

Melakukan penyesuian *bandwidth* pada *winbox* bila belum sesuai dengan manajemen *bandwidth* yang sudah ditentukan seperti ada penambahan PC *Client* atau *Bandwidth*.

HASIL DAN PEMBAHASAN

Hasil

Setup mikrotik HTB dengan PCQ

Pada penelitian ini peneliti menggunakan koneksi *internet* yang di berikan oleh server pusat sebesar 20 Mb dan mikrotik *Router*board model 951ui 2hnd, yang peneliti gunakan dalam penelitian ini hanya port 1 dan port 2. Port 1 digunakan sebagai penerima *internet* dan port 2 sebagai penyalur *internet* kepada *Client*, port 1 menggunakan Ip Adress 192.168.10.243/24 sedangkan port 2 menggunakan Ip Adress 192.168.12.1/24 dengan setingan *Dynamic Host Configuration Protocol* (DHCP) kepada *Client* seperti pada gambar 2.

Address List				
+ - * = >				Find
Address + 192.168.10.243/24 + 192.168.10.243/24 Address (192.168.10.243/24) Address: [192.168.10.243/24) Address: [192.168.10.0 Network: [192.168.10.0	Network 192.168.10.0 192.168.12.0	Interface ether1 ether2 K K ddress <192 168 12.1/24	>	· · · · · · · · · · · · · · · · · · ·
enabled		Address: 192.168.12.1/2 Network: 192.168.12.0 nterface: ether2	↓	OK Cancel Apply Disable Comment Copy Remove
2 items (1 selected)	e	nabled		
z items (1 selected)				

Gambar 2. Ip Address Port 1 dan Port

Gateway yang digunakan adalah 192.168.10.10 seperti pada gambar 3.

Research Article	e-ISSN:	; p-ISSN:	
------------------	---------	-----------	--

Routes Nexthops	s Rules VRF	
+ *		Find
Route <0.0.0.0/0>		
General Attribute	es	
Dst. Address:	0.0.0/0	
Gateway:	192.168.10.10 ▼ reachable ether1	\$
Check Gateway:		•
Type:	unicast	₹
Distance:	1	
Scope:	30	
Target Scope:	10	
Routing Mark:		•
Pref. Source:		•

Gambar 3. Gateway yang Digunakan pada Mikrotik

DNS yang digunakan adalah 192.168.10.10 seperti pada gambar 4.

DNS Settings			
Servers:	192.168.10.10	\$	ОК
Dynamic Servers:			Cancel
Use DoH Server:		•	Apply
	Verify DoH Certificate		Static
	Allow Remote Requests		Cache
Max UDP Packet Size:	4096		
Query Server Timeout:	2.000	3	
Query Total Timeout:	10.000	8	
Max. Concurrent Queries:	100		
Max. Concurrent TCP Sessions:	20		
Cache Size:	2048	бB	
Cache Max TTL:	7d 00:00:00		
Cache Used:	48 KiB		

Gambar 4. DNS yang Digunakan pada Mikrotik

Pada mikrotik sudah disediakan metode PCQ dengan nama pcq-*download-default* dan pcq-*upload-default* yang berada pada menu *queue* types pada *queue* list. Pcq*download-default* digunakan untuk pembagian *download* secara merata sedangkan pcq*upload-default* digunakan untuk pembagian *upload* secara merata. Bisa dilihat pada gambar 5.

Jurnal Kesehatan, Sains, dan Teknologi Vol. 1, No.1 Agustus 2022 Available online at https://jurnal.undhirabali.ac.id/index.php/jakasakti/index

Research Article

lueue List		Queue Type <pcq-upl< th=""><th>oad-default></th><th></th><th></th><th>X IP Scan</th><th></th></pcq-upl<>	oad-default>			X IP Scan	
Simple Queues Interface Queu	ues Queue Tree	Type Name:	pcq-upload-default	ОК		1	nterface: ether1
+ - 7		Kind:	pcq Ŧ	Cancel	Find	Address	s Range:
Type Name /	Kind	Rate:	0 bits/s	Apply		-	
default-small	pfifo	Queue Size:	50 KiB	Queue Type <pca-dov< td=""><td>wnload-default></td><td></td><td></td></pca-dov<>	wnload-default>		
ethemet-default hotspot-default	pfifo sfa	Total Queue Size:	2000 KiB	Type Name:	pcg-download-default		ОК
multi-queue-ethemet-default	mq pfifo	Burst Rate:	▼ bits/s	Kind:	pcq	Ŧ	Cancel
pcq-download-default	pcq	Burst Threshold:	•	Pater	0	hito (o	Annhy
pcq-upload-default synchronous-default	pcq	Burst Time:	00:00:10	Oueue Size:	50	KiB	Арру
wireless-default	sfq	Classifier:	Src. Address Dst. Address	Total Queue Size:	2000	KIB	Сору
			Src. Port Dst. Port				Remove
		Src. Address Mask:	32	Burst Rate:	└	' bits/s	
· · · · ·		Dst. Address Mask:	32	Burst Time:	00.00.10		
U items (1 selected)		Src. Address6 Mask:	128	Classifier:	Sto. Addresse Jul Det Ad	drace	
		Dst. Address6 Mask:	128	Cidobiliei.	Src. Part Dst. Pa	diess rt	
		default					
				Src. Address Mask:	32		
				Ust. Address Mask:	32		
				Det Address6 Mask:	120		
				LISE OULIESSO MIDSE.	120		

e-ISSN:

; p-ISSN:

Gambar 5. Default Metode PCQ yang ada pada Mikrotik

Peneliti menggunakan port 2 sebagai *Parent* untuk menerapkan pembagian PCQ pada *Client* dengan pengaturan sebagai berikut. Pada simple *queue* peneliti membuat 1 *queue* dengan nama *Bridge* LAN dengan max limit 40 Mb, sesuai dengan gambar 6.

Simple Queue <bridge lan=""></bridge>				
General Advanced Statistic	s Traffic Total	Total Statistics		ОК
Name: Bridge LAN				Cancel
Target: LAN			= +	Apply
Dst.:				Disable
	Target Upload	T	arget Download	Comment
Max Limit: 40M	₹	40M	₹ bits/s	Сору
- A Burst		lt at 1		Bemove
Burst Limit: Unlimited	•	unlimited	➡ bits/s	Theme ve
Burst Threshold: unlimited	₹	unlimited		Reset Counters
Burst Time: 0		0	s	Reset All Counters
-▼· Time				Torch
enabled				

Gambar 6. Pengaturan Parent Bridge LAN pada Tab General

Pada tab *Advanced* menggunakan pcq-*download-default* pada target *download* dan pcq-*upload-default* pada target *download* seperti gambar 7.

General Adv	anced	Statistics	Traffic	Total	Total Statistics			ОК
acket Marks:	[Cancel
			Target	Upload	Target	Download	i	Apply
Limit At:	unlimite	ed		₹	unlimited	Ŧ	bits/s	Disable
Priority:	8		8]	Comment		
Bucket Size:	0.100		0.100 ratio		ratio	Сору		
Queue Type:	pcq-upload-default			pcq-download-default	Ŧ		Remove	
Parent:	none						₹	Reset Counters
								Reset All Counters
								Torch

e-ISSN:

; p-ISSN:

Gambar 7. Pengaturan Parent Bridge LAN pada Tab Advanced

Setup ke dua di lakukan pada *filter rule* di firewall untuk melakukan *drop* pada paket *youtube* supaya tidak bisa di akses. Pada *Tab General* pilih *Chain forward* dan Scr. *Address* 192.168.12.0/24 pada gambar 8.

irewall Ru	ıle <192.168.1	2.0/24	>			
General	Advanced	Extra	Action	Statistics	L.,	OK
	Chain:	forwar	d		₹	Cancel
	Src. Address:	19	2.168.12	.0/24	•	Apply
	Dst. Address:				•	Disable
	Protocol:] •	Comment
	Src. Port:				•	Сору
	Dst. Port:				•	Remove
	Any. Port:				•	Reset Counters
C	In. Interface: Out. Interface:				• •	Reset All Counters
In.	Interface List:] •	
Out.	Interface List:				-	

Gambar 8. Pengaturan pada Tab General

Pada tab Advanced untuk Layer 7 Protocol pilih Youtube yang telah di buat di Regxp seperti gambar 9.

ewall Rule <192.168.12.0/2	4>		
aeneral Advanced Extra	Action	Statistics	OK
Src. Address List:		•	Cancel
Dst. Address List:		•	Apply
Layer7 Protocol:	YouTube	.	Disable
Content:		_	Comment
Connection Bytes:		•	Сору
Connection Rate:		▼	Remove
Per Connection Classifier:		•	Reset Counters
Src. MAC Address:		•	Reset All Counters

Gambar 9. Pengaturan pada Tab Advanced

e-ISSN:

; p-ISSN:

Pada *tab action* pilih *Action drop* untuk memblokir paket data yang di akses oleh *Client*. Pada gambar 10.

Firewall Ru	ule <192.168.	12.0/24:	>			
General	Advanced	Extra	Action	Statistics		ОК
Act	tion: drop				₹	Cancel
1	Log					Apply
Log Pr	efix:				•	Disable
						Comment
i.						Сору
						Remove
						Reset Counters
9						Reset All Counters

Gambar 10. Pengaturan pada Tab Action

Pembahasan

Metode HTB dan PCQ yang di terapkan pada Router ke Client

Pengujian metode HTB dan PCQ dilakukan menggunakan simple *queue* untuk membuat *queue parent* dan *child*, pada *parent* sudah di terapkan PCQ dan di berikan *bandwidth* sebesar 20Mb di bagi dengan 9 *child* atau *Client* di perkirakan akan mendapat *bandwidth* kurang lebih 2,20Mb pada masing-masing *Client* dan pengujian dilakukan pada

e-ISSN:

; p-ISSN:

download dan upload. Komputer Client yang akan di pakai untuk pengujian memiliki spesifikasi sebagai berikut pada tabel 1

NAMA KOMPUTER	SPESIFIKASI
Kom1	Prosesor: Intel Core i 5/3330/3.00Ghz/ivyBridge
	RAM: DDR 3/4GB
	Motherboard: Gigabyte GA-B75M-HD3/ivyBridge
	OS : Windows 7
Kom5	Prosesor: core i 5/3470/3.20Ghz/ivyBridge
	RAM: DDR 3/4GB
	Motherboard: Intel H61/ivyBridge
	OS : Windows 7
Kom7	Prosesor: Intel Pentium/G2010/2.80Ghz/ivyBridge
	RAM: DDR 3/4GB
	Motherboard: Gigabyte GA-B75M-HD3/ivyBridge
	OS : Windows 7
Kom11	Prosesor: Intel Core i 5/3330/3.00Ghz/ivyBridge
	RAM: DDR 3/4GB
	Motherboard: Gigabyte GA-B75M-HD3/ivyBridge
	OS : Windows 7
Kom12	Prosesor: Intel Core i 5/3330/3.00Ghz/ivyBridge
	RAM: DDR 3/2GB
	Motherboard: Gigabyte GA-B75M-HD3/ivyBridge
	OS : Windows 7
Kom14	Prosesor: core i 5/3470/3.20Ghz/ivyBridge
	RAM: DDR 3/4GB
	Motherboard: Intel H61/ivyBridge
	OS : Windows 7
Kom15	Prosesor: Intel Core i 5/3330/3.00Ghz/ivyBridge
	RAM: DDR 3/4GB
	Motherboard: Gigabyte GA-B75M-HD3/ivyBridge
	OS : Windows 7
Kom17	Prosesor: Intel Core i 5/7400/3.00Ghz/kabylake
	RAM: DDR 4/4GB
	Motherboard: Gigabyte H110M-DS2/kabylake
	HDD: OS : Windows 10
Kom20	Prosesor: core i 5/3470/3.20Ghz/ivyBridge
	RAM: DDR 3/4GB
	Motherboard: Intel H61/ivyBridge
	HDD: OS : Windows 7

Tabel 1. Spesifikasi komputer Client pada laboratorium 3

1. Pengujian *download* pada *Client* sebelum dan sesudah menggunakan metode PCQ.

Pada pengujian *download* beban yang didapat dengan cara setiap *Client* mengakses video *youtube* dengan video resolusi 4K *Client* di menit pertama, ke dua dan ke tiga sebelum metode PCQ di aktifkan bisa dilihat pada gambar 11, 12 dan 13

Pada saat PCQ belum di aktifkan terlihat pada gambar 11 di menit pertama bahwa komputer dengan *bandwidth* terendah adalah komputer 5 yaitu 0 bps dan komputer yang mendapat *bandwidth* tertinggi adalah komputer 7 dan 11 mendapat *bandwidth* 3 Mbps.

Simp	le Queues Interfac	e Queues Queue Tree Qu	eue Types			
+	- 🖉 🖾 🖻	Reset Counters	Conters			
#	Name /	Target	Download Max Limi	t II	Download	Total
0	PCQ	ether2 - LabKom 3	. 20M		19.3 Mbps	
1	📕 kom1	192.168.100.53	20M		1918.8 kbps	
2	📕 kom5	192.168.100.62	20M		0 bps	
3	📥 kom7	192.168.100.54	. 20M		3.0 Mbps	
4	📕 kom11	192.168.100.61	. 20M		3.0 Mbps	
5	📕 kom12	192.168.100.200	20M		583.8 kbps	
6	kom14	192.168.100.59	20M	1	2.4 Mbps	
7	kom15	192.168.100.56	. 20M		2.8 Mbps	
8	kom17	192.168.100.55	. 20M		2.2 Mbps	
9	kom20	192.168.100.52	. 20M		3.1 Mbps	

Gambar 11. Menit Pertama Sebelum PCQ Diaktifkan

Pada menit ke dua komputer dengan *bandwidth* terendah adalah komputer 5 yaitu 160 kbps dan komputer yang mendapat *bandwidth* tertinggi adalah komputer 20 mendapat *bandwidth* 3.1 Mbps.

Simp	le Queues Interfac	e Queues Queue Tree Queue	Types			
÷	- 🔸 🗶 🗂	🕎 🕼 Reset Counters	Reset All Counters			
#	Name /	Target	/ Download Max Limit	111	Download	
0	PCQ	ether2 - LabKom 3	. 20M		16.9 Mbps	
1	📕 kom1	192.168.100.53	. 20M	1	160.5 kbps	
2	📥 kom5	192.168.100.62	. 20M	12	619.7 kbps	
3	📕 kom7	192.168.100.54	: 20M		680.0 kbps	
4	📥 kom11	192.168.100.61	: 20M	1	2.4 Mbps	
5	kom12	192.168.100.200	: 20M		1325.1 kbps	
6	kom14	192.168.100.59	. 20M	-	2.9 Mbps	
7	kom15	192.168.100.56	. 20M		2.9 Mbps	
8	kom17	192.168.100.55	. 20M	114	2.6 Mbps	
9	kom20	192,168,100.52	20M		3.1 Mbps	

Gambar 12. Menit ke Dua Sebelum PCQ Diaktifkan

e-ISSN: ; p-ISSN:

Pada gambar 13 di menit ke tiga komputer dengan *bandwidth* terendah adalah komputer 17 yaitu 158 kbps dan komputer yang mendapat *bandwidth* tertinggi adalah komputer 15 mendapat *bandwidth* 3.0 Mbps.

Queue	e List			
Simp	le Queues Interfac	e Queues Queue Tree Queu	e Types	
+	- * * 🖸	Reset Counters	Reset All Counters	
#	Name /	Target	Download Max Limit	UIDownload
0	PCQ	ether2 - LabKom 3	. 20M	18.4 Mbps
1	📥 kom1	192.168.100.53	20M	359.0 kbps
2	kom5	192.168.100.62	. 20M	1660.0 kbps
3	📥 kom7	192.168.100.54	20M	2.9 Mbps
4	kom11	192.168.100.61	20M	2.5 Mbps
5	kom12	192.168.100.200	20M	2.9 Mbps
6	kom14	192.168.100.59	. 20M	2.7 Mbps
7	kom15	192.168.100.56	. 20M	3.0 Mbps
8	📥 kom17	192.168.100.55	20M	158 bps
9	kom20	192.168.100.52	20M	2.2 Mbps

Gambar 13. Menit ke Tiga Sebelum PCQ Diaktifkan

Pada pengujian *download Client* di menit pertama, ke dua dan ke tiga setelah menggunakan metode PCQ di aktifkan bisa dilihat pada gambar 14, 15 dan 16. Setelah PCQ di aktifkan Terlihat pada gambar 14 di menit pertama komputer dengan *bandwidth* terendah adalah komputer 7 yaitu 542,8 kbps dan komputer yang mendapat *bandwidth* tertinggi adalah komputer 20 mendapat *bandwidth* 2,6 Mbps.

Simp	le Queues Interfac	e Queues Queue Tree Qu	ueue Types	
-	- 🔸 🗶 🗂	Reset Counters	C Reset All Counters	
#	Name /	Target	Download Max Limit	III Download
0	PCQ	ether2 - LabKom 3	. 20M	17.8 Mbps
1	kom1	192.168.100.53	. 20M	1304.7 kbps
2	📥 kom5	192.168.100.62	. 20M	2.4 Mbps
3	kom7	192.168.100.54	. 20M	542.8 kbps
4	📕 kom11	192.168.100.61	. 20M	2.4 Mbps
5	kom12	192.168.100.200	. 20M	2.0 Mbps
6	kom14	192.168.100.59	. 20M	2.3 Mbps
7	kom15	192.168.100.56	. 20M	2.3 Mbps
8	kom17	192.168.100.55	. 20M	1795.0 kbps
9	📥 kom20	192.168.100.52	20M	2.6 Mbps

Gambar 14. Menit Pertama Setelah PCQ Diaktifkan

Pada menit ke dua gambar 15 pada menit ke dua komputer dengan *bandwidth* terendah adalah komputer 14 yaitu 1121,2 kbps dan komputer yang mendapat *bandwidth* tertinggi adalah komputer 12 mendapat *bandwidth* 2,4 Mbps.

0.000	e List				
Simp	le Queues Interfac	e Queues Queue Tree Qu	ueue Types		
•	- 🔸 🗶 🗂	Reset Counters	C Reset All Counters		
#	Name /	Target	/ Download Max	Limit III	Download
0	PCQ	ether2 - LabKom 3	. 20M		17.2 Mbps
1	📕 kom1	192.168.100.53	: 20M	10	1167.5 kbps
2	📥 kom5	192.168.100.62	: 20M		1610.1 kbps
3	📥 kom7	192.168.100.54	. 20M		2.2 Mbps
4	📕 kom11	192.168.100.61	. 20M		2.2 Mbps
5	kom12	192.168.100.200	: 20M		2.4 Mbps
6	kom14	192.168.100.59	: 20M		1121.2 kbps
7	📕 kom15	192.168.100.56	. 20M		2.2 Mbps
8	📕 kom17	192.168.100.55	. 20M	1	2.0 Mbps
9	📕 kom20	192.168.100.52	: 20M	2	2.1 Mbps

· p-ISSN·

Gambar 15. Menit ke Dua Setelah PCQ Diaktifkan

Pada gambar 16 di menit ke tiga komputer dengan bandwidth terendah adalah komputer 1 yaitu 1497,8 kbps dan komputer yang mendapat bandwidth tertinggi adalah komputer 17 mendapat bandwidth 2,8 Mbps.

lueue	e List			
Simp	le Queues Interfac	e Queues Queue Tree Queue	ueue Types	
+	- 🔸 🗶 🗂	Reset Counters	Reset All Counters	
#	Name /	Target	/ Download Max Limit	IIIDownload
0	PCQ	ether2 - LabKom 3	. 20M	17.9 Mbps
1	📕 kom1	192.168.100.53	20M	1497.8 kbps
2	kom5	192.168.100.62	. 20M	1756.6 kbps
3	📥 kom7	192.168.100.54	. 20M	2.6 Mbps
4	kom11	192.168.100.61	. 20M	1725.1 kbps
5	kom12	192.168.100.200	. 20M	1664.2 kbps
6	kom14	192.168.100.59	. 20M	1866.5 kbps
7	kom15	192.168.100.56	. 20M	1862.7 kbps
8	kom17	192.168.100.55	20M	2.8 Mbps
9	📥 kom20	192.168.100.52	. 20M	2.1 Mbps

Gambar 16 Menit ke Tiga Setelah PCQ Diaktifkan

2. Pengujian upload pada Client sebelum dan sesudah menggunakan metode PCQ.

Pada saat PCQ belum di aktifkan terlihat pada gambar 17 di menit pertama bahwa komputer dengan bandwidth terendah adalah komputer 20 yaitu 275,1 kbps dan komputer yang mendapat bandwidth tertinggi adalah komputer 1, 7 dan 11 mendapat bandwidth 3,5 Mbps.

#	Name	Target	Packet Marks	Upload Avg. Rate	Upload
0	PCQ	ether2 - LabKom 3		20.1 Mbps	20.0 Mbps
1	📥 kom1	192.168.100.53		3.8 Mbps	3.5 Mbps
5	📥 kom5	192.168.100.62	10	814.5 kbps	1311.1 kbps
3	📥 kom7	192.168.100.54	1	3.9 Mbps	3.5 Mbps
4	📕 kom11	192.168.100.61	11	3.8 Mbps	3.5 Mbps
5	📥 kom12	192.168.100.200		742.5 kbps	1001.4 kbps
6	📕 kom14	192.168.100.59	1010	342.2 kbps	291.3 kbps
7	📥 kom15	192.168.100.56	4.1	752.4 kbps	872.1 kbps
8	kom17	192.168.100.55	121	762.4 kbps	791.3 kbps
9	📥 kom20	192.168.100.52		241.4 kbps	275.1 kbps

e-ISSN:

; p-ISSN:

Gambar 17. Pengujian Upload Menit Pertama Sebelum PCQ Diaktifkan

Pada gambar 18 di menit ke dua komputer dengan *bandwidth* terendah adalah komputer 14 yaitu 418,3 kbps dan komputer yang mendapat *bandwidth* tertinggi adalah komputer 7 dan 11 mendapat *bandwidth* 5,1 Mbps.

#	Name	Target	Packet Marks	Upload Avg. Rate	Upload
0	PCQ	ether2 - LabKom 3		20.3 Mbps	26.7 Mbps
1	📥 kom1	192.168.100.53		782.5 kbps	866.8 kbps
2	📕 kom5	192.168.100.62	44	894.9 kbps	1094.0 kbps
3	📕 kom7	192.168.100.54		3.8 Mbps	5.1 Mbps
4	📕 kom11	192.168.100.61		3.8 Mbps	5.1 Mbps
5	🚢 kom12	192.168.100.200		822.6 kbps	1011.3 kbps
6	📕 kom14	192.168.100.59		331.8 kbps	418.3 kbps
7	📕 kom15	192.168.100.56	1	832.7 kbps	1011.4 kbps
8	📥 kom17	192.168.100.55		832.7 kbps	1075.5 kbps
9	📥 kom20	192.168.100.52		301.8 kbps	483.0 kbps

Gambar 18. Pengujian Upload Menit Kedua Sebelum PCQ Diaktifkan

Pada gambar 19 di menit ke tiga komputer dengan *bandwidth* terendah adalah komputer 20 yaitu 178,8 kbps dan komputer yang mendapat *bandwidth* tertinggi adalah komputer 7 dan 11 mendapat *bandwidth* 4,4 Mbps.

#	Name	Target	II Packet Marks	Upload Avg. Rate	Upload
0	PCQ	ether2 - LabKom 3		20.2 Mbps	20.8 Mbps
1	📕 kom1	192.168.100.53	44	3.7 Mbps	1698.8 kbps
2	📕 kom5	192.168.100.62	31	1086.5 kbps	1228.2 kbps
3	📕 kom7	192.168.100.54		3.7 Mbps	4.4 Mbps
4	📕 kom11	192.168.100.61		3.8 Mbps	4.4 Mbps
5	📕 kom12	192.168.100.200	91	892.9 kbps	830.1 kbps
6	📥 kom14	192.168.100.59	11	392.3 kbps	396.3 kbps
7	📕 kom15	192.168.100.56	44	722.4 kbps	909.1 kbps
8	📕 kom17	192.168.100.55		812.7 kbps	869.6 kbps
9	🚢 kom20	192.168.100.52		231.4 kbps	178.8 kbps

Gambar 19. Pengujian Upload Menit Ketiga Sebelum PCQ Diaktifkan

Pada pengujian *upload Client* di menit pertama, ke dua dan ke tiga setelah metode PCQ di aktifkan bisa dilihat pada gambar 20, 21 dan 22.

e-ISSN: ; p-ISSN:

Pada gambar 20 dimenit ke pertama komputer dengan *bandwidth* terendah adalah komputer 12 dan 17 yaitu 327,5 kbps dan komputer yang mendapat *bandwidth* tertinggi adalah komputer 1 dan 11 mendapat *bandwidth* 5,0 Mbps.

	Name	/ larget	Packet Marks	Upload Avg. Rate	Upload	
0	PCQ	ether2 - LabKom 3		20.1 Mbps	0 bps	
1	📥 kom1	192.168.100.53		3.5 Mbps	5.0 Mbps	
2	📥 kom5	192.168.100.62		985.4 kbps	1244.0 kbps	
3	📥 kom7	192.168.100.54		3.7 Mbps	4.9 Mbps	
4	📥 kom11	192.168.100.61		3.7 Mbps	5.0 Mbps	
5	kom12	192.168.100.200		391.2 kbps	327.5 kbps	
6	📥 kom14	192.168.100.59		120.7 kbps	120.9 kbps	
7	📥 kom15	192.168.100.56		391.2 kbps	327.5 kbps	
8	📥 kom17	192.168.100.55		371.3 kbps	327.7 kbps	
9	📥 kom20	192.168.100.52		3.1 Mbps	4.4 Mbps	

Gambar 20 Pengujian Upload Menit Pertama Setelah PCQ Diaktifkan

Pada gambar 21 di menit kedua komputer dengan *bandwidth* terendah adalah komputer 14 yaitu 418,3 kbps dan komputer yang mendapat *bandwidth* tertinggi adalah komputer 7 dan 11 mendapat *bandwidth* 5,1 Mbps.

#	Name /	Target	Packet Marks	Upload Avg. Rate	Upload
0	PCQ	ether2 - LabKom 3		20.2 Mbps	0 bps
1	📕 kom1	192.168.100.53		3.6 Mbps	3.4 Mbps
2	📥 kom5	192.168.100.62		975.4 kbps	783.5 kbps
3	📥 kom7	192.168.100.54		3.6 Mbps	3.4 Mbps
4	📥 kom11	192.168.100.61		3.6 Mbps	3.5 Mbps
5	📥 kom12	192.168.100.200		341.0 kbps	372.3 kbps
6	📥 kom14	192.168.100.59		321.7 kbps	149.2 kbps
7	📥 kom15	192.168.100.56		351.2 kbps	390.8 kbps
8	kom17	192.168.100.55		371.1 kbps	372.2 kbps
9	kom20	192.168.100.52		3.0 Mbps	2.9 Mbps

Gambar 21 Pengujian upload menit kedua setelah PCQ Diaktifkan

Pada gambar 22 di menit ke tiga komputer dengan *bandwidth* terendah adalah komputer 15 yaitu 367,0 kbps dan komputer yang mendapat *bandwidth* tertinggi adalah komputer 1 mendapat *bandwidth* 4,8 Mbps.

0	PCQ	ether2 - LabKom 3	20.1 Mbps	12.2 Mbps
1	📕 kom1	192.168.100.53	3.5 Mbps	4.8 Mbps
2	📥 kom5	192.168.100.62	643.5 kbps	665.4 kbps
3	📥 kom7	192.168.100.54	3.5 Mbps	4.8 Mbps
4	kom11	192.168.100.61	3.5 Mbps	4.7 Mbps
5	📥 kom12	192.168.100.200	431.5 kbps	471.9 kbps
6	📥 kom14	192.168.100.59	301.6 kbps	367.7 kbps
7	📕 kom15	192.168.100.56	491.7 kbps	367.0 kbps
8	📕 kom17	192.168.100.55	522.1 kbps	420.3 kbps
9	📥 kom20	192.168.100.52	3.0 Mbps	4.2 Mbps

Gambar 22 Pengujian Upload Client di Menit ke Tiga

Pengujian Metode Layer 7 Protocol

Layer 7 Protocol merupakan seperangkat peraturan atau prosedur dengan 7 lapisan atau disebut juga 7 layer OSI adalah sebuah model arsitektural jaringan yang dikembangkan oleh badan International Organization for Standardization (ISO) di Eropa pada tahun 1977. Pengujian metode *Layer 7* protocol dilakukan pada website *youtube*

; p-ISSN:

bertujuan untuk mencegah akses paket dari youtube ke komputer Client menggunakan firewall untuk drop paket dan wireshark untuk pembuktian apakah youtube berhasil di block seperti gambar 24, 25, 26 dan 27 berikut ini.

Pada gambar 24 tampilan mikrotik dan youtube sebelum filter di aktifkan terlihat website youtube masih bisa di akses.

Call Safe Mode	Session:	<u>.</u>									Tensei Shita	ıra Slime	Datta Ken 🗙	+					0			
Cluick Set	Firewall										N 0 1								62	A =	-	
CAPSMAN Interfaces	Riter Ru	es NAT	Mangle	Raw	Service Ports	Connection	s Add	dress List	ts Laye	76			youtube.co	m/watch:	/=a05XA7	CUNUU	6	य।	. <u></u>		ف ا	
Wireless	+ -	* ×		7 ((Reset Counters	(O Reset	All Cou	nters	Find	=	Nou	Tuhe ^{ID}				Q		[∓ ¤	888	(<mark>9+</mark>		
Bridge	#	Action	Chain	Src	Address	Dat Add	ess Pr	nto S	rc Port	D	100	nubc							000			f ,
PPP	1 D	n jump	forward							1												
Switch	2 D	M jump	input								1			-							0	
* Meeh	30	a drop	input				6	(tcp)		64				Sugges	ted: Official /	Announce	ment Tear	ser Ten:	sei Shitari	a Slime T.	- (i)	
B ID N	5.0	acc.	hainput				13	7.61		64				N.		1						
	6 D	✓ acc	hs-input				6	(tcp)		64												
UpenHow	7 D	🔁 jump	hs-input																			
Routing P	8 D	# reject	hs-unauth				6	(tcp)														
System	9 D	× reject	hs-unauth																			
Queues	- plar	e hotspot	n les here	10																		
Files	11 X	pas	unused-hs																			
Log	::: Bloc	k Youtube																				
RADIUS	12 X	🗱 drop	forward	19.	2.168.12.0/24								ALC: NO.									
Tools D	•																					
New Terminal	13 items	1 selected	0															P				
													1				har 1					
1005																A I		1				
LOHa																	11					
z lo l r													17			Ne						
Dot1X																					Sup	
MetaROUTER											Rimuru Senpai	renSura										
Partition																			-	-		2
Make Supout nf	1																					
New WinBox													Chat	Poplay in c	licoblad for	this Dre	mioro					
Ext	1												Crial	Replay is c	isabled for	uns Pre	aniele.					
Madaun																						
THINKING	11																					

Gambar 24 Tampilan Mikrotik dan Youtube Sebelum Filter Diaktifkan

Pada gambar 25 Tampilan command prompt sebelum filter di aktifkan terlihat masih ada respond dari server youtube.

🔳 C:\\	VINDOV	VS\system32\ping.exe								
Pingi	ng you	utube-ui.l.google	.com [172.	217.194.1	36] with	32	bytes	of	data:	
Reply	from	172.217.194.136:	bytes=32	time=63ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=66ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=64ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=70ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=58ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=66ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=57ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=64ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=60ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=66ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=71ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=66ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=74ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=62ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=66ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=70ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=65ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=62ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=68ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=65ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=62ms	TTL=104					
Reply	from	172.217.194.136:	bytes=32	time=90ms	TTL=104					

Gambar 25 Tampilan Command Prompt Sebelum Filter Diaktifkan

e-ISSN: ; p-ISSN:

Saat filter diaktifkan terlihat pada Gambar 26 *youtube* bisa diakses tetapi tidak bisa melakukan *download* file video.

Ce Safe Mode	Session:	ra Slime Datta Ken 🛙 × 🕂 💿 — 🗆 ×									
Quick Set CAPsMAN	Riter Rules NAT Mangle Raw Service Ports Connections Address Lists Layer? F	🗋 🗎 youtube.com/watch?v=a05XA7CUh0U 🔍 🤯 🛕 🖬 🚍									
Wireless	🕈 🗕 🗸 🗶 🔄 🍸 (o Reset Counters 🕜 Reset All Counters Find 💦 👘	/ouTube 🔍 Search 🛛 Q 🔳 🖙 🗰 🥮 👧 📘									
3C Bridge	# Action Chain Src. Address Dst. Address Proto Src. Port D										
THE PPP	1 D 👧 jump forward										
🕎 Switch	2 D Ariump input										
°T. Mesh	4 D Silumo heimput	U									
an Ip	► 5 D acc hs-input 17 (u 6-										
OpenFlow	6 D 🛷 acc hs-input 6 (tcp) 6-										
TRautina	7 D Minimp hsinput										
Sustam D	9 D Strelect hsunauth										
	10 D 🗱 reject he-unauth-to										
Filee											
E Lee	II.X pas unuseons										
	12 🗱 drop forward 192.168.12.0/24										
AT RADIUS	· ·										
N 100IS	13 items (1 selected)										
tau rvew reminar											
THU69		fub									
	N I I I I I I I I I I I I I I I I I I I	100 screet									
de Deally		NON									
W DOLLA											
Padition											
Make Supert of	6										
A New Mie Rev											
E La		Chat Replay is disabled for this Premiere.									
EM COL											
0 - Martin 5	N N N N N N N N N N N N N N N N N N N										
windows 1	#TeoSiza										
4	Tensei Shit	ara Slime Datta Ken II That Time I Got Reincarnated As a Slime									
	•										

Gambar 26. Tampilan Mikrotik dan Youtube setelah Filter Diaktifkan

Pada command prompt gambar Gambar 27 terlihat komputer *Client* mendapatkan request timed out server *youtube* tidak merespon

Gambar 27. Tampilan command prompt setelah filter diaktifkan

SIMPULAN

Berdasarkan hasil penelitian Implementasi Manajemen *Bandwidth* dengan Metode *Hierarchical Token Bucket* (HTB) menggunakan *Router* mikrotik maka dapat diambil kesimpulan bahwa dengan metode HTB yang di lengkapi dengan metode *Per Connection Queue* (PCQ) dan *Layer 7* Protocol berhasil meningkatkan efektifitas jaringan komputer di laboratorium 3 komputer Universitas Dhyana Pura. Kesimpulan ini diambil dari perbandingan pemerataan hasil *download* dan *upload* pada komputer sebelum dan sesudah pengujian. Sebelum melakukan penerapan manajemen *bandwidth* bisa dilihat ada beberapa komputer tidak mendapatkan *bandwidth* secara maksimal yaitu 0 Mbps dan setelah menerapkan manajemen *bandwidth* ada peningkatan mendekati pemerataan yang di

e-ISSN: ; p-ISSN:

harapkan yaitu 2.22 Mbps per *Client*, dan keberhasilan dalam penerapan *Layer 7* Protocol untuk mencegah akses ke salah satu website yaitu *youtube* bila tidak di perlukan.

SARAN

Adapun beberapa saran yang diberikan kepada peneliti berikutnya apabila ingin mengembangkan sistem yang telah dibuat ini agar menjadi lebih baik adalah Implementasi Manajemen *Bandwidth* dengan HTB dapat di kembangan lagi dengan menambah kriteria pendukung QOS dan pada *Layer 7* Protocol bisa ditambahkan program lainnya yang mungkin mengurangi konsentrasi mahasiswa saat proses pembelajaran.

UCAPAN TERIMA KASIH

Segala puji syukur saya panjatkan kepada Tuhan Yang Maha Esa atas berkat dan rahmat-Nya, penulis dapat menyelesaikan Skripsi yang berjudul "IMPLEMENTASI **MANAJEMEN** *BANDWIDTH* **DENGAN METODE** *HIERARCHICAL TOKEN BUCKET* (HTB) MENGGUNAKAN *ROUTER* MIKROTIK".

Penulis menyadari dalam pembuatan Skripsi ini tidak terlepas dari bantuan dan doa dari semua pihak, begitu banyak pengarahan dan bantuan dari semua pihak terutama pihak perusahaan yang telah memberikan kesempatan dan fasilitas sehingga dapat melaksanakan penelitian ini dengan baik. Oleh karena itu penulis hendak mengucapkan terima kasih kepada:

- 1. Orang tua tercinta, yang telah memberikan doa, semangat, dukungan, dan motivasi selama melakukan studi.
- 2. Bapak Gerson Feoh, S.Kom., MT sebagai Dosen Pembimbing
- 3. Bapak Putu Wida Gunawan, S.Si., M.Cs sebagai Dosen Pembimbing.
- 4. Bapak Agus Tommy Adi P K, ST., MT, sebagai Kepala departemen *Information and Communications Technology* (ICT) Universitas Dhyana Pura Bali
- 5. Semua teman teman di Prodi Teknik Informatika Universitas Dhyana Pura angkatan 2015, 2016 & 2017
- 6. Semua pihak yang tidak dapat disebutkan satu per satu yang terlibat dalam penyusunan Skripsi ini sehingga dapat selesai dengan baik.

Semoga Tuhan Yang Maha Esa membalas segala bantuan yang diberikan kepada Penulis. Penulis menyadari sebagai manusia biasa yang banyak memiliki kekurangan dalam penulisan Skripsi ini. Penulis mengharapkan kritik dan saran, dan semoga Skripsi ini dapat bermanfaat khususnya bagi Penulis dan umumnya bagi para pembaca. Akhir kata semoga Tuhan Yang Maha Esa memberi berkat dan penyertaan-Nya kepada kita semua untuk bersyukur dan mencintai ilmu pengetahuan yang tentunya akan berguna bagi diri pribadi, keluarga serta masyarakat dan Negara. Amin.

e-ISSN:

; p-ISSN:

DAFTAR PUSTAKA

- Akbar, T. (2018) Implementasi Manajemen Bandwidth Router Mikrotik Menggunakan Metode Hierarchical Token Bucket (Htb) Di Smk Bina Mandiri, Fakultas TeKnik Universitas Negeri Jakarta.
- Andika, A. and Susanti, F. (2018) Pengaruh Marketing Mix Terhadap Keputusan Pembelian Parfum di Azzwars Parfum Lubeg Padang. INA-Rxiv. doi: 10.31227/osf.io/upgc3.
- Armanto, A. and Daulay, N. K. (2020) 'Analisis Quality of Service (QOS) Pada Jaringan Internet di Universitas Bina Insan Lubuklinggau Menggunakan Metode Hierarchical Token Bucket (HTB)', Jurnal Digital Teknologi Informasi, 3(1). doi: 10.32502/digital.v3i1.2471.
- Atmadja, N. P. (2015) Implementasi Algoritma Hierarchy Token Bucket Untuk Manajemen Bandwidth Pada Studi Kasus CV. Kopi Bendoro Indonesia Cabang Pondok Labu. Available at: http://repository.upnvj.ac.id (Accessed: 9 April 2021).
- Helmy, D., Priyanto, H. and Srimurdianti, A. S. (2015) Analisis dan Perbandingan Implementasi Metode Simple Queue Dengan Hierarchical Token Bucket (HTB) (Studi Kasus Makosat Brimob Polda Kalbar), JUSTIN (Jurnal Sistem dan Teknologi Informasi). Available at: https://jurnal.untan.ac.id/index.php/justin/article/view/11401 (Accessed: 9 April 2021).
- Kurnia, D. (2017) 'Analisis QOS Pada Pembagian Bandwidth Dengan Metode Layer 7 Protocol, PCQ, HTB dan Hotspot di SMK Swasta Al-Washliyah Pasar Senen', CESS (Journal of Computer Engineering, System and Science), 2(2). doi: 10.24114/CESS.V2I2.6541.
- Lisnawita (2016) Manajemen Bandwidth Menggunakan Metode Hierarchical Token Bucket - Repository Universitas Lancang Kuning. Available at: https://repository.unilak.ac.id/292/ (Accessed: 9 April 2021).
- Lukman, L. et al. (2019) 'Manajemen Bandwidth Menggunakan Metode Hierarchical Token Bucket (HTB) di Farid.net', Creative Information Technology Journal, 5(3). doi: 10.24076/citec.2018v5i3.237.
- Riadi, I. (2016) 'Optimalisasi Keamanan Jaringan Menggunakan Pemfilteran Aplikasi Berbasis Mikrotik Pendahuluan Landasan Teori', *JUSI, Universitas Ahmad Dahlan Yogyakarta*, 1(1).
- Siregar, S. (2016) 'Analisa Algoritma Hierarchy Token Bucket Dalam Pembagian Bandwidth Internet Pada Setiap Komputer Client Berbasis Mikrotik Pada STMIK Budidarma', Jurnal Ilmiah INFOTEK, 1(1). Available at: http://www.stmik-budidarma.ac.id// (Accessed: 9 April 2021).
- Soba, S. K. T., Rachmawati, Y. and Raharjo, S. (2015) Pada Implementasi Video

e-ISSN:

; p-ISSN:

Jurnal Jarkom. Available Streaming, at: https://ejournal.akprind.ac.id/index.php/jarkom/article/view/944 (Accessed: 9 April 2021).

Wulandari, R. (2016) Analisis QoS (Quality of Service) Pada Jaringan Internet (Studi Kasus : UPT Loka Uji Teknik Penambangan Jampang Kulon-LIPI), Jurnal Teknik Informatika Sistem Informasi. dan doi: 10.28932/JUTISI.V2I2.620.