Bibliometric Analysis of Global Research Trends on the Antidiabetic Potential of Andaliman (Zanthoxylum armatum DC.)
Main Article Content
Abstract
This study presents a bibliometric analysis of global research trends concerning the antidiabetic potential of Zanthoxylum armatum DC. Data were retrieved from the Scopus database and analyzed using VOSviewer to map keywords, thematic clusters, and research evolution. The findings highlight a strong focus on antidiabetic effects and the pharmacological activity of bioactive compounds such as alkylamides, flavonoids, and phenolics, which act through mechanisms including inhibition of α-glucosidase and α-amylase, activation of the AMPK pathway, and enhancement of glucose transport. The visualizations also reveal the incorporation of Z. armatum into low-glycemic functional foods. This study underscores the plant’s promising role in natural diabetes therapy and the value of bibliometric approaches in systematically evaluating research landscapes.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Ahmadi, S., Ahmadi, G., & Ahmadi, H. (2022). A review on antifungal and antibacterial activities of some medicinal plants. Micro Nano Bio Aspects, 1(1), 10-17. https://doi.org/10.22034/mnba.2022.150563
Amin, A., Shah, R., & Varghese, J. (2023). Alkylamides from Zanthoxylum species: Molecular docking and pharmacokinetic analysis for type 2 diabetes management. Journal of Ethnopharmacology, 316, 116781. https://doi.org/10.1016/j.jep.2023.116781
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Arokiasamy, P., Salvi, S., & Selvamani, Y. (2021). Global burden of diabetes mellitus. In Handbook of global health (pp. 1-44). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-05325-3_28-1
Barrett, A. H., Farhadi, N. F., & Smith, T. J. (2018). Slowing starch digestion and inhibiting digestive enzyme activity using plant flavanols/tannins—A review of efficacy and mechanisms. Lwt, 87, 394-399. https://doi.org/10.1016/j.lwt.2017.09.002
Baynes, H. W. (2015). Classification, pathophysiology, diagnosis and management of diabetes mellitus. J diabetes metab, 6(5), 1-9. https://doi.org/10.4172/2155-6156.1000541
Carmo de Carvalho e Martins, M. D., da Silva Santos Oliveira, A. S., da Silva, L. A. A., Primo, M. G. S., & de Carvalho Lira, V. B. (2022). Biological indicators of oxidative stress [malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase] and their application in nutrition. In Biomarkers in nutrition (pp. 833-856). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-07389-2_49
Deacon, C. F., & Lebovitz, H. E. (2016). Comparative review of dipeptidyl peptidase‐4 inhibitors and sulphonylureas. Diabetes, Obesity and Metabolism, 18(4), 333-347. https://doi.org/10.1111/dom.12610
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
Gondokesumo, M. E., Kusuma, H. S. W., & Widowati, W. (2017). α-/β-glucosidase and α-amylase inhibitory activities of roselle (Hibiscus sabdariffa L.) ethanol extract. Molecular and Cellular Biomedical Sciences, 1(1), 34-40. https://doi.org/10.21705/mcbs.v1i1.3
Hassan, M. A., & Duarte, P. (2024). Mapping scientific landscapes: The role of bibliometric analysis in ethnopharmacological research. Frontiers in Pharmacology, 15, 1287334. https://doi.org/10.3389/fphar.2024.1287334
Hassan, W., & Duarte, A. E. (2024). Bibliometric analysis: a few suggestions. Current problems in cardiology, 49(8), 102640.
Hong, F., Pan, S., Guo, Y., Xu, P., & Zhai, Y. (2019). PPARs as nuclear receptors for nutrient and energy metabolism. Molecules, 24(14), 2545. https://doi.org/10.3390/molecules24142545
Kim, H. J., & Park, S. Y. (2024). Regulation of hepatic gluconeogenesis and lipid metabolism by Zanthoxylum piperitum extract via AMPK activation. Phytomedicine, 127, 155284. https://doi.org/10.1016/j.phymed.2023.155284
Kong, C. C., Cheng, J. D., & Wang, W. (2023). Neurotransmitters regulate β cells insulin secretion: a neglected factor. World Journal of Clinical Cases, 11(28), 6670. https://doi.org/10.12998/wjcc.v11.i28.6670
Kumar, S., & Chakravarty, S. (2018). Amylases. In Enzymes in human and animal nutrition (pp. 163-180). Academic Press. https://doi.org/10.1016/B978-0-12-805419-2.00008-3
Lee, Y. J., Oh, E., & Jeong, H. (2023). Anti-hyperglycemic effects of Zanthoxylum piperitum through modulation of AMPK and GLUT4 pathways in diabetic mice. Frontiers in Pharmacology, 14, 1219805. https://doi.org/10.3389/fphar.2023.1219805
Li, X., Bai, Y., Jin, Z., & Svensson, B. (2022). Food-derived non-phenolic α-amylase and α-glucosidase inhibitors for controlling starch digestion rate and guiding diabetes-friendly recipes. Lwt, 153, 112455. https://doi.org/10.1016/j.lwt.2021.112455
Lim, W. M., & Kumar, S. (2024). Bibliometric and content analysis in health sciences: Trends and thematic evolution. Scientometrics, 129(2), 547–565. https://doi.org/10.1007/s11192-024-04987-2
Mawthoh, A. B., Seram, D., Singh, K. A., & Watt, H. J. (2023). Applications of Prickly Ash (Zanthoxylum spp.): Potential in Traditional Science. Modern Science, and Agriculture. Journal of Food Chemistry and Nanotechnology, 9(S1), S117-S131. https://doi.org/10.17756/jfcn.2023-S1-016
Okagu, I. U., Ndefo, J. C., Aham, E. C., & Udenigwe, C. C. (2021). Zanthoxylum species: a comprehensive review of traditional uses, phytochemistry, pharmacological and nutraceutical applications. Molecules, 26(13), 4023. https://doi.org/10.3390/molecules26134023
Omar, B., & Ahrén, B. (2014). Pleiotropic mechanisms for the glucose-lowering action of DPP-4 inhibitors. Diabetes, 63(7), 2196-2202. https://doi.org/10.2337/db14-0052
Pechmann, L. M., Pinheiro, F. I., Andrade, V. F. C., & Moreira, C. A. (2024). The multiple actions of dipeptidyl peptidase 4 (DPP-4) and its pharmacological inhibition on bone metabolism: a review. Diabetology & Metabolic Syndrome, 16(1), 175. https://doi.org/10.1186/s13098-024-01412-x
Peres, M., Costa, H. S., Silva, M. A., & Albuquerque, T. G. (2023). The health effects of low glycemic index and low glycemic load interventions on prediabetes and type 2 diabetes mellitus: a literature review of RCTs. Nutrients, 15(24), 5060. https://doi.org/10.3390/nu15245060
Rahman, M. M., Khatun, M., & Roy, D. (2023). Functional food applications of Zanthoxylum piperitum leaf powder in glycemic control: Clinical and biochemical perspectives. Food Bioscience, 52, 102377. https://doi.org/10.1016/j.fbio.2023.102377
Salehi, B., Zakaria, Z. A., Gyawali, R., Ibrahim, S. A., Rajkovic, J., Shinwari, Z. K., ... & Setzer, W. N. (2019). Piper species: A comprehensive review on their phytochemistry, biological activities and applications. Molecules, 24(7), 1364. https://doi.org/10.3390/molecules24071364
Shah, A., Yadav, A., & Joshi, N. (2024). Multifunctional potential of Zanthoxylum species: From traditional medicine to vector control. Environmental Science and Pollution Research, 31(4), 3932–3945. https://doi.org/10.1007/s11356-024-29218-9
Song, S., Oh, S., & Lim, K. T. (2015). Bioactivity of proteins isolated from Lactobacillus plantarum L67 treated with Zanthoxylum piperitum DC glycoprotein. Letters in applied microbiology, 60(6), 597-604. https://doi.org/10.1111/lam.12416
Tyagi, S., Gupta, P., Saini, A. S., Kaushal, C., & Sharma, S. (2011). The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. Journal of advanced pharmaceutical technology & research, 2(4), 236-240. DOI: 10.4103/2231-4040.90879
Verma, K. K., Kumar, B., Raj, H., & Sharma, A. (2021). A review on chemical constituents, traditional uses, pharmacological studies of Zanthoxylum armatum (rutaceae). J. Drug Deliv. Ther, 11(2-S), 136-142. http://dx.doi.org/10.22270/jddt.v11i2-s.4786
Wondmkun, Y. T. (2020). Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes, Metabolic Syndrome and Obesity, 3611-3616. https://doi.org/10.2147/DMSO.S275898
Xu, Y., Huang, J., Wang, N., Tan, H. Y., Zhang, C., Li, S., ... & Feng, Y. (2021). Network pharmacology–based analysis and experimental exploration of antidiabetic mechanisms of gegen Qinlian decoction. Frontiers in Pharmacology, 12, 649606. https://doi.org/10.3389/fphar.2021.649606
Yan, L., & Zhiping, W. (2023). Mapping the literature on academic publishing: A bibliometric analysis on WOS. Sage Open, 13(1), 21582440231158562. https://doi.org/10.1177/21582440231158562
Youssef, M. E., Shehtou, G., Abdelkader, E., & EL-Abasy, H. (2025). Cardioprotective Mechanisms of Metformin: A Review of Molecular Pathways and Therapeutic Implications Beyond Glycemic Control. Delta University Scientific Journal, 8(1), 32-39. https://dx.doi.org/10.21608/dusj.2025.356991.1120
Zain, H. H. M. (2024). Bibliometric Analysis of Global Research Trends on Plant Extract in Antidiabetic Research Using the Scopus Database. Journal of Science and Mathematics Letters, 12(2), 134-141.
Zain, R. A. (2024). Global trends in medicinal plant research: A bibliometric overview of Zanthoxylum genus and its therapeutic applications. Plants, 13(3), 589. https://doi.org/10.3390/plants13030589
Zeng, M., van Pijkeren, J. P., & Pan, X. (2023). Gluco‐oligosaccharides as potential prebiotics: Synthesis, purification, structural characterization, and evaluation of prebiotic effect. Comprehensive Reviews in Food Science and Food Safety, 22(4), 2611-2651. https://doi.org/10.1111/1541-4337.13156
Zhang, Y., Wang, X., Liu, J., & Li, H. (2021). Insights into the antidiabetic potential of traditional medicinal plants: Mechanisms and challenges. Phytotherapy Research, 35(3), 1243–1257. https://doi.org/10.1002/ptr.6874
Zhou, R., Li, T., & Sun, X. (2024). Phenolic compounds from Zanthoxylum piperitum attenuate lipid peroxidation and improve insulin signaling in obese-diabetic rats. Phytomedicine Plus, 4(2), 100395. https://doi.org/10.1016/j.phyplu.2023.100395