Health Dashboard: Monitoring and Analysis of Outbreak in East Kalimantan
Main Article Content
Abstract
Public health significantly impacts a country's progress and resilience, particularly through economic growth, human development, and social stability. Outbreaks are a serious public health issue because they can disrupt the health system, increase the burden of disease, and lead to inequity in services. This study aims to develop a health dashboard to monitor and analyze outbreaks in East Kalimantan. Data from the Central Statistics Agency (BPS) and the Satu Data Kalimantan Timur were used to develop the dashboard. The District/City Health Profile Technical Guidelines were used to assist in compiling the dashboard data sources. This research method employed action research with a quantitative descriptive approach. This study successfully developed a dashboard with three levels of analysis. The first level consisted of scorecards and controls; the second, area maps and bar charts; and the third, line charts and heatmap tables. The KPI using the scorecard showed a 0% validity tolerance in the KPI calculation accuracy test. In the interactive functionality test, cross-filtering and control filters worked as expected. From the 2024 data analysis, the rapid response ratio for areas affected by outbreaks and conducting epidemiological investigations was 1.69% in Samarinda City. Meanwhile, Balikpapan City had the highest rapid response rate, with 5.88%. This study's findings indicated a data anomaly in the Satu Data Kalimantan Timur data, as evidenced by a service coverage ratio exceeding 100%. The number of residents in the outbreak- affected areas receiving services, according to the Satu Data Kalimantan Timur standard, exceeds the population recorded in the 2024 BPS data.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
![]()
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Alcayna, T., Fletcher, I., Gibb, R., Tremblay, L., Funk, S., Rao, B., & Lowe, R. (2022). Climate-Sensitive Disease Outbreaks in the Aftermath of Extreme Climatic Events: A Scoping Review. One Earth, 5(4), 336–350. https://doi.org/10.1016/j.oneear.2022.03.011
Alfaro-Tanco, J. A., Avella, L., Moscoso, P., & Näslund, D. (2021). An Evaluation Framework for the Dual Contribution of Action Research: Opportunities and Challenges in the Field of Operations Management. International Journal of Qualitative Methods, 20. https://doi.org/10.1177/16094069211017636
Bach, B., Freeman, E., Abdul-Rahman, A., Turkay, C., Khan, S., Fan, Y., & Chen, M. (2022). Dashboard Design Patterns. IEEE Transactions on Visualization and Computer Graphics, 1–11. https://doi.org/10.1109/TVCG.2022.3209448
Baker, R. E., Mahmud, A. S., Miller, I. F., Rajeev, M., Rasambainarivo, F., Rice, B. L., Takahashi, S., Tatem, A. J., Wagner, C. E., Wang, L.-F., Wesolowski, A., & Metcalf, C. J. E. (2022). Infectious Disease in an Era of Global Change. Nature Reviews Microbiology, 20(4), 193–205. https://doi.org/10.1038/s41579-021-00639-z
Charnley, G. E. C., Kelman, I., Gaythorpe, K. A. M., & Murray, K. A. (2021). Traits and Risk Factors of Post-Disaster Infectious Disease Outbreaks: A Systematic Review. Scientific Reports, 11(1), 5616. https://doi.org/10.1038/s41598-021-85146-0
Dharmaratne, A. D. V. T. T., De Livera, A., Georgiou, S., & Stylianou, S. (2025). Variable Selection Methods for Descriptive Modeling. PLOS One, 20(6), e0321601. https://doi.org/10.1371/journal.pone.0321601
Du, M., Sai, A., & Kong, N. (2021). A data-driven optimization approach for multi-period resource allocation in cholera outbreak control. European Journal of Operational Research, 291(3), 1106–1116. https://doi.org/10.1016/j.ejor.2020.09.052
Farhat-El-Zibaoui, M., Flecha-Lescún, J., Serrano Fernandez, J. A., & Martinez-Millana, A. (2025). Business Intelligence-Based Dashboard for Obstetrics Service. https://doi.org/10.3233/SHTI250316
Gaies, B. (2022). Reassessing the Impact of Health Expenditure on Income Growth in the Face of the Global Sanitary Crisis: The Case of Developing Countries. The European Journal of Health Economics, 23(9), 1415–1436. https://doi.org/10.1007/s10198-022-01433-1
Goldkuhl, G., Cronholm, S., & Lind, M. (2020). Multi-Grounded Action Research. Information Systems and E-Business Management, 18(2), 121–156. https://doi.org/10.1007/s10257-020-00469-1
Katapally, T. R., & Ibrahim, S. T. (2023). Digital Health Dashboards for Decision-Making to Enable Rapid Responses During Public Health Crises: Replicable and Scalable Methodology. JMIR Research Protocols, 12, e46810. https://doi.org/10.2196/46810
Keating, P., Murray, J., Schenkel, K., Merson, L., & Seale, A. (2021). Electronic data collection, management and analysis tools used for outbreak response in low- and middle-income countries: a systematic review and stakeholder survey. BMC Public Health, 21(1), 1741. https://doi.org/10.1186/s12889-021-11790-w
Kemenkes. (2022). Petunjuk Teknis Profil Kesehatan Kabupaten/Kota Indonesia 2022. In T. Seviana, F. Sibuea, E. V. Manullang, Khairani, E. S. Sakt, & E. K. Putri (Eds.), PETUNJUK TEKNIS PENYUSUNAN PROFIL KESEHATAN PROVINSI, KABUPATEN/KOTA, DAN PUSKESMAS. KEMENTERIAN KESEHATAN REPUBLIK INDONESIA.
Mazzà, C., Alcock, L., Aminian, K., Becker, C., Bertuletti, S., Bonci, T., Brown, P., Brozgol, M., Buckley, E., Carsin, A.-E., Caruso, M., Caulfield, B., Cereatti, A., Chiari, L., Chynkiamis, N., Ciravegna, F., Del Din, S., Eskofier, B., Evers, J., … Rochester, L. (2021). Technical validation of real-world monitoring of gait: a multicentric observational study. BMJ Open, 11(12), e050785. https://doi.org/10.1136/bmjopen-2021-050785
Modly, L. A., & Smith, D. J. (2022). The need for data management standards in public health nursing: A narrative review and case study. Public Health Nursing, 39(5), 1027–1033. https://doi.org/10.1111/phn.13066
Ofori, M. A., Lartey, S., Durneva, P., Jha, N., Mittal, N., Roy, S., Zeba, Z., Chirwa, S., Saulsberry-Scarboro, N., Taylor, M., & Joshi, A. (2025). Visual communication of public health data: a scoping review. Frontiers in Digital Health, 7. https://doi.org/10.3389/fdgth.2025.1555231
Qi, S. S. J., & Nagalingham, S. (2023). Business Intelligence Data Visualization for Diabetes Health Prediction. International Journal of Advanced Computer Science and Applications, 14(1). https://doi.org/10.14569/IJACSA.2023.0140190
Ridhwan, M. M., Nijkamp, P., Ismail, A., & M.Irsyad, L. (2022). The effect of Health on Economic Growth: A Meta-Regression Analysis. Empirical Economics, 63(6), 3211–3251. https://doi.org/10.1007/s00181-022-02226-4
Saatchi, M., Khankeh, H. R., Shojafard, J., Barzanji, A., Ranjbar, M., Nazari, N., Mahmodi, M. A., Ahmadi, S., & Farrokhi, M. (2024). Communicable Diseases Outbreaks After Natural Disasters: A Systematic Scoping Review for Incidence, Risk Factors and Recommendations. Progress in Disaster Science, 23, 100334. https://doi.org/10.1016/j.pdisas.2024.100334
Sharma, L. R. (2022). Dealing with Crucial Aspects of Action Research. International Research Journal of MMC, 3(5), 59–74. https://doi.org/10.3126/irjmmc.v3i5.50739
Susnjak, T., Ramaswami, G. S., & Mathrani, A. (2022). Learning analytics dashboard: a tool for providing actionable insights to learners. International Journal of Educational Technology in Higher Education, 19(1), 12. https://doi.org/10.1186/s41239-021-00313-7
Tayefi, M., Ngo, P., Chomutare, T., Dalianis, H., Salvi, E., Budrionis, A., & Godtliebsen, F. (2021). Challenges and opportunities beyond structured data in analysis of electronic health records. WIREs Computational Statistics, 13(6). https://doi.org/10.1002/wics.1549
Wang, Z., Pei, S., Cui, H., Zhang, J., & Jia, Z. (2024). Zoonotic Spillover and Extreme Weather Events Drive the Global Outbreaks of Airborne Viral Emerging Infectious Diseases. Journal of Medical Virology, 96(6). https://doi.org/10.1002/jmv.29737