Pengoptimalan Menggunakan Central Composite Design (CCD) untuk Depolimerisasi Kitosan secara Degradasi Oksidatif dengan NaNO2

Main Article Content

Dhian Eka Wijaya
Edwin Permana
Martina Asti Rahayu
Nur Ahniyanti Rasyid
Ali Nurdin Hidayat

Abstract

Optimalisasi proses depolimerisasi kitosan melalui degradasi oksidatif dilakukan
menggunakan natrium nitrit (NaNO2) sebagai agen oksidator untuk menghasilkan Low
Molecular Weight Chitosan (LMWC). Metode eksperimen menggunakan desain eksperimen
Central Composite Design (CCD) berbasis Response Surface Methodology (RSM) untuk
mengidentifikasi pengaruh berbagai faktor proses terhadap tingkat depolimerisasi kitosan.
Depolimerisasi kitosan dilakukan untuk pengembangan manfaatnya melalui proses
derivatisasi untuk memperluas jangkauan aplikasinya. LMWC hasil depolimerisasi memiliki
sifat mudah larut dalam air/larutan berair dengan pH netral dan memiliki viskositas yang
lebih rendah dalam kondisi fisiologis sehingga lebih mudah diaplikasikan di berbagai bidang,
seperti biomedis dan pertanian. Faktor-faktor yang dimasukkan dalam eksperimen adalah
suhu reaksi (A), konsentrasi NaNO2, dan waktu reaksi. Analisis statistika menunjukkan data
eksperimen mengikuti model linier dengan nilai koefisien determinasi (R2) sebesar 0,9219.
Nilai optimal variabel independen pada 50 C; 0,3 M NaNO2, dan 1,5 jam. Pengukuran Mv
pada kondisi ini memiliki ketepatan 94.35% dengan penurunan bobot molekul sebesar
83.68%.

Article Details

How to Cite
Dhian Eka Wijaya, Edwin Permana, Martina Asti Rahayu, Nur Ahniyanti Rasyid, & Ali Nurdin Hidayat. (2024). Pengoptimalan Menggunakan Central Composite Design (CCD) untuk Depolimerisasi Kitosan secara Degradasi Oksidatif dengan NaNO2. Seminar Ilmiah Nasional Teknologi, Sains, Dan Sosial Humaniora (SINTESA), 6. Retrieved from https://jurnal.undhirabali.ac.id/index.php/sintesa/article/view/2775
Section
Articles

References

Agirre, M., Zarate, J., Ojeda, E., Puras, G., Desbrieres, J., Pedraz, J. L. 2014. Low

molecular weight chitosan (LMWC)-based polyplexes for pDNA delivery: from

bench to bedside. Polymers. Vol. 6: 1727-1755. doi: 10.3390/polym6061727

Amin, S., Alavi, S. S., Aghayan, H., Yousefnia, H. 2022. Synthesis and

characterization of a novel nanocomposite ([(SBA-15)-(Cu(BTC)]-

[KZn(Fe(CN)6)]) for cesium removal from aqueous media and optimization

condition using central composite design. Microporous and Mesoporous Materials.

Vol. 345. doi: 10.1016/j.micromeso.2022.112250.

Bezrodnykh, E. A., Blagodatskikh, I. V., Kulikov, S. N., Zelenikhin, P. V., Yamskov,

I. A., Tikhonov, V. E. 2018. Consequences of chitosan decomposition by nitrous

acid: Approach to non-branched oligochitosan oxime. Carbohydrate Polymers.

Vol. 195: 551-557. doi: 10.1016/j.carbpol.2018.05.007.

Blagodatskikh, I. V., Kulikov, S. N., Vyshivannaya, O. V., Bezrodnykh, E. A.,

Tikhonov, V. E. 2017. N-Reacetylated oligochitosan: pH dependence of selfassembly properties and antibacterial activity. Biomacromolecules. Vol. 18 (5):

-1498. doi: 10.1021/acs.biomac.7b00039.

Elik A. 2022. Application of central composite design in parameters optimization of

nano-structured supramolecular solvent based on liquid-liquid microextraction

for determination of total lead in food, vegetables, grilled meat products, and

water samples. Sustainable Chemistry and Pharmacy. Vol. 29. doi:

1016/j.scp.2022.100801.

Kamboj, A., Chopra, R., Singh, R., Saxena, V., Kumar, P. 2022. Effect of pulsed

electric field parameters on the alkaline extraction of valuable compounds from

perilla seed meal and optimization by central composite design approach.

Applied Food Research. Vol. 2 (2). doi: 10.1016/j.afres.2022.100240.

Kulikov, S. N., Bayazitovaa, L. T., Tyupkinaa, O. F. Zelenikhinb, P. V., Salnikovab,

M. M., Bezrodnykhc, E. A., Tikhonovc, V. E. 2016. Evaluation of a method for the

determination of antibacterial activity of chitosan. Applied Biochemistry and

Microbiology. Vol. 52 (5): 502–507. doi: 10.1134/S0003683816050100.

Kulikov, S. N., Lisovskaya, S. A., Zelenikhin, P. V., Bezrodnykh, E. A., Shakirova, D.

R., Blagodatskikh, I. V., Tikhonov, V. E. 2014. Antifungal activity of

oligochitosans (short chain chitosans) against some Candida species and clinical

isolates of Candida albicans: Molecular weight–activity relationship. European

Journal of Medicinal Chemistry. Vol. 74: 169-178. doi:

1016/j.ejmech.2013.12.017.

Kurchenko, V. P., Kapustin, M. A., Sushinskaya, N. V., Chudnovskaya, E. V.,

Mayorova, K. I., Tikhonov, V. E. 2019. Elicitor activity of oligohytosanes with

different molecular mass and degree of acetylation when treating seeds of corn.

AIP Conference Proceedings. Vol. 2063. doi: 10.1063/1.5087318.

Luo, J., Wan, L., Zhang, Q., Cui B., Li, C., Jiang, Y., Jiang, M., Wang, K. 2023.

Constructing a drug release model by central composite design to investigate the

interaction between drugs and temperature-sensitive controlled release

nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics. Vol.

: 24-32. doi: 10.1016/j.ejpb.2022.12.009.

Sadhukhan, B., Mondal, N. K., Chattoraj, S. 2016. Optimisation using central

composite design (CCD) and the desirability function for sorption of methylene

blue from aqueous solution onto Lemna major. Karbala Int J of Modern Sci. doi:

1016/j.kijoms.2016.03.005

Sajomsanga, W. Tantayanon, S., Tangpasuthadol, V., Thatte, M., Daly, W. H. 2008.

Synthesis and characterization of N-aryl chitosan derivatives. Int Bio

Macromolecules. Vol 43:79–87. doi: 10.1016/j.ijbiomac.2008.03.010. Sugita, P., Wijaya, D. E., Syahbirin, G., Dewi, R. M. 2017. Antimalarial drugs based

on chitosan nanoparticles of Cassia fistula L. and Duranta repens L. fruits

methanol extract. Der Pharma Chemica. Vol. 9(18):58-63.

Widiantini, F., Purnama, A., Yulia, E., Formanda, D. 2016. Keefektifan oligochitosan

dalam menekan pertumbuhan jamur patogen Rigidoporus lignosus [(klotzsch)

imazeki] penyebab penyakit jamur akar putih pada tanaman cengkeh secara in

vitro. Jurnal Agrikultura. Vol. 27 (1): 59-64