Pengoptimalan Menggunakan Central Composite Design (CCD) untuk Depolimerisasi Kitosan secara Degradasi Oksidatif dengan NaNO2
Article Sidebar
Main Article Content
Abstract
Optimalisasi proses depolimerisasi kitosan melalui degradasi oksidatif dilakukan
menggunakan natrium nitrit (NaNO2) sebagai agen oksidator untuk menghasilkan Low
Molecular Weight Chitosan (LMWC). Metode eksperimen menggunakan desain eksperimen
Central Composite Design (CCD) berbasis Response Surface Methodology (RSM) untuk
mengidentifikasi pengaruh berbagai faktor proses terhadap tingkat depolimerisasi kitosan.
Depolimerisasi kitosan dilakukan untuk pengembangan manfaatnya melalui proses
derivatisasi untuk memperluas jangkauan aplikasinya. LMWC hasil depolimerisasi memiliki
sifat mudah larut dalam air/larutan berair dengan pH netral dan memiliki viskositas yang
lebih rendah dalam kondisi fisiologis sehingga lebih mudah diaplikasikan di berbagai bidang,
seperti biomedis dan pertanian. Faktor-faktor yang dimasukkan dalam eksperimen adalah
suhu reaksi (A), konsentrasi NaNO2, dan waktu reaksi. Analisis statistika menunjukkan data
eksperimen mengikuti model linier dengan nilai koefisien determinasi (R2) sebesar 0,9219.
Nilai optimal variabel independen pada 50 C; 0,3 M NaNO2, dan 1,5 jam. Pengukuran Mv
pada kondisi ini memiliki ketepatan 94.35% dengan penurunan bobot molekul sebesar
83.68%.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Agirre, M., Zarate, J., Ojeda, E., Puras, G., Desbrieres, J., Pedraz, J. L. 2014. Low
molecular weight chitosan (LMWC)-based polyplexes for pDNA delivery: from
bench to bedside. Polymers. Vol. 6: 1727-1755. doi: 10.3390/polym6061727
Amin, S., Alavi, S. S., Aghayan, H., Yousefnia, H. 2022. Synthesis and
characterization of a novel nanocomposite ([(SBA-15)-(Cu(BTC)]-
[KZn(Fe(CN)6)]) for cesium removal from aqueous media and optimization
condition using central composite design. Microporous and Mesoporous Materials.
Vol. 345. doi: 10.1016/j.micromeso.2022.112250.
Bezrodnykh, E. A., Blagodatskikh, I. V., Kulikov, S. N., Zelenikhin, P. V., Yamskov,
I. A., Tikhonov, V. E. 2018. Consequences of chitosan decomposition by nitrous
acid: Approach to non-branched oligochitosan oxime. Carbohydrate Polymers.
Vol. 195: 551-557. doi: 10.1016/j.carbpol.2018.05.007.
Blagodatskikh, I. V., Kulikov, S. N., Vyshivannaya, O. V., Bezrodnykh, E. A.,
Tikhonov, V. E. 2017. N-Reacetylated oligochitosan: pH dependence of selfassembly properties and antibacterial activity. Biomacromolecules. Vol. 18 (5):
-1498. doi: 10.1021/acs.biomac.7b00039.
Elik A. 2022. Application of central composite design in parameters optimization of
nano-structured supramolecular solvent based on liquid-liquid microextraction
for determination of total lead in food, vegetables, grilled meat products, and
water samples. Sustainable Chemistry and Pharmacy. Vol. 29. doi:
1016/j.scp.2022.100801.
Kamboj, A., Chopra, R., Singh, R., Saxena, V., Kumar, P. 2022. Effect of pulsed
electric field parameters on the alkaline extraction of valuable compounds from
perilla seed meal and optimization by central composite design approach.
Applied Food Research. Vol. 2 (2). doi: 10.1016/j.afres.2022.100240.
Kulikov, S. N., Bayazitovaa, L. T., Tyupkinaa, O. F. Zelenikhinb, P. V., Salnikovab,
M. M., Bezrodnykhc, E. A., Tikhonovc, V. E. 2016. Evaluation of a method for the
determination of antibacterial activity of chitosan. Applied Biochemistry and
Microbiology. Vol. 52 (5): 502–507. doi: 10.1134/S0003683816050100.
Kulikov, S. N., Lisovskaya, S. A., Zelenikhin, P. V., Bezrodnykh, E. A., Shakirova, D.
R., Blagodatskikh, I. V., Tikhonov, V. E. 2014. Antifungal activity of
oligochitosans (short chain chitosans) against some Candida species and clinical
isolates of Candida albicans: Molecular weight–activity relationship. European
Journal of Medicinal Chemistry. Vol. 74: 169-178. doi:
1016/j.ejmech.2013.12.017.
Kurchenko, V. P., Kapustin, M. A., Sushinskaya, N. V., Chudnovskaya, E. V.,
Mayorova, K. I., Tikhonov, V. E. 2019. Elicitor activity of oligohytosanes with
different molecular mass and degree of acetylation when treating seeds of corn.
AIP Conference Proceedings. Vol. 2063. doi: 10.1063/1.5087318.
Luo, J., Wan, L., Zhang, Q., Cui B., Li, C., Jiang, Y., Jiang, M., Wang, K. 2023.
Constructing a drug release model by central composite design to investigate the
interaction between drugs and temperature-sensitive controlled release
nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics. Vol.
: 24-32. doi: 10.1016/j.ejpb.2022.12.009.
Sadhukhan, B., Mondal, N. K., Chattoraj, S. 2016. Optimisation using central
composite design (CCD) and the desirability function for sorption of methylene
blue from aqueous solution onto Lemna major. Karbala Int J of Modern Sci. doi:
1016/j.kijoms.2016.03.005
Sajomsanga, W. Tantayanon, S., Tangpasuthadol, V., Thatte, M., Daly, W. H. 2008.
Synthesis and characterization of N-aryl chitosan derivatives. Int Bio
Macromolecules. Vol 43:79–87. doi: 10.1016/j.ijbiomac.2008.03.010. Sugita, P., Wijaya, D. E., Syahbirin, G., Dewi, R. M. 2017. Antimalarial drugs based
on chitosan nanoparticles of Cassia fistula L. and Duranta repens L. fruits
methanol extract. Der Pharma Chemica. Vol. 9(18):58-63.
Widiantini, F., Purnama, A., Yulia, E., Formanda, D. 2016. Keefektifan oligochitosan
dalam menekan pertumbuhan jamur patogen Rigidoporus lignosus [(klotzsch)
imazeki] penyebab penyakit jamur akar putih pada tanaman cengkeh secara in
vitro. Jurnal Agrikultura. Vol. 27 (1): 59-64