Hubungan Polimorfisme Toll-Like Receptor 2 Dan Sifilis Okular
Article Sidebar
Main Article Content
Abstract
Sejak pandemi HIV terjadi peningkatan kasus sifilis okular. Hal ini perlu menjadi perhatian karena penyakit ini terutama dijumpai pada kelompok usia produktif, adanya risiko penyulit berupa gangguan penglihatan bahkan kebutaan, dan yang terpenting sampai saat ini pengobatan lini pertama untuk sifilis okular belum tersedia di Indonesia. Untuk itu sangat penting mengetahui faktor risiko yang mempengaruhi kejadian tersebut. Sifat genetik juga dapat berperan penting sebagai faktor risiko sifilis okular. Beberapa polimorfisme gen diperkirakan menjadi faktor risiko endogen terjadinya sifilis okular salah satunya adalah polimorfisme Toll-like receptor 2 (TLR2). TLR memegang peranan kunci dalam garis pertahanan pertama melawan patogen karena kemampuannya untuk mengenali pathogen-associated molecular patterns (PAMP). Saat ini telah diidentifikasi 10 TLR pada manusia yaitu TLR1 sampai TLR10. Beberapa TLR sangat spesifik dalam mengenali dan mengikat beberapa ligan tertentu, seperti TLR2 yang secara spesifik mengenali dan berikatan dengan lipoprotein bakteri. Treponema pallidum, adalah agen penyebab sifilis yang membran luarnya berupa lipoprotein sebagai penentu virulensi. Saat T. pallidum masuk kedalam tubuh host maka akan mengekspresikan banyak lipoprotein, kemudian merangsang sel imun bawaan melalui TLR2. Sehingga polimorfisme pada TLR2 diduga dapat merusak respon imun bawaan terhadap lipopeptida dan lipoprotein spirochetal. Suatu penelitian mendapatkan polimorfisme pada gen TLR2 berhubungan dengan penurunan respons terhadap stimulasi lipoprotein T47L dari T. pallidum dan secara signifikan berhubungan dengan neurosifilis dan sifilis okular. Perlu dilakukan penelitian lebih lanjut untuk mengetahui pengaruh polimorfisme TLR 2 sebagai faktor risiko kejadian sifilis okular.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Arifin, J., Massi, M. N., Biakto, K. T., Bukhari, A., Noor, Z., & Johan, M. P. (2023). Randomized controlled trial of vitamin d supplementation on toll-like receptor-2 (tlr-2) and toll-like receptor-4 (tlr-4) in tuberculosis spondylitis patients. Journal of Orthopaedic Surgery and Research, 18(1), 983. https://doi.org/10.1186/s13018-023-04445-6
Badawi, A., Rahman, S., Shering, M., Ogden, N., & Lindsay, R. (2016). Toll-like receptor cascade and gene polymorphism in host&pathogen interaction in Lyme disease. Journal of Inflammation Research, 91. https://doi.org/10.2147/JIR.S104790
Centers for Disease Control, U., & Division of STD Prevention, P. (2019). CDC Call to Action: Let’s Work Together to Stem the Tide of Rising Syphilis in the United States.
Edmondson, D. G., & Norris, S. J. (2021). In Vitro Cultivation of the Syphilis Spirochete Treponema pallidum. Current Protocols, 1(2). https://doi.org/10.1002/cpz1.44
Gu, X., Gao, Y., Yan, Y., Marks, M., Zhu, L., Lu, H., … Zhou, P. (2020). The importance of proper and prompt treatment of ocular syphilis: a lesson from permanent vision loss in 52 eyes. Journal of the European Academy of Dermatology and Venereology, 34(7), 1569–1578. https://doi.org/10.1111/jdv.16347
Huang, T., Yang, J., Zhang, J., Ke, W., Zou, F., Wan, C., … Zheng, H. (2020). MicroRNA-101-3p Downregulates TLR2 Expression, Leading to Reduction in Cytokine Production by Treponema pallidum–Stimulated Macrophages. Journal of Investigative Dermatology, 140(8), 1566-1575.e1. https://doi.org/10.1016/j.jid.2019.12.012
Jaiswal, A. K., Tiwari, S., Jamal, S. B., de Castro Oliveira, L., Alves, L. G., Azevedo, V., … Soares, S. C. (2020a). The pan-genome of Treponema pallidum reveals differences in genome plasticity between subspecies related to venereal and non-venereal syphilis. BMC Genomics, 21(1), 33. https://doi.org/10.1186/s12864-019-6430-6
Kopp, T. I., Vogel, U., Tjonneland, A., & Andersen, V. (2018). Meat and fiber intake and interaction with pattern recognition receptors (TLR1, TLR2, TLR4, and TLR10) in relation to colorectal cancer in a Danish prospective, case-cohort study. The American Journal of Clinical Nutrition, 107(3), 465–479. https://doi.org/10.1093/ajcn/nqx011
Kreisel, K. M., Spicknall, I. H., Gargano, J. W., Lewis, F. M. T., Lewis, R. M., Markowitz, L. E., … Weinstock, H. S. (2021). Sexually Transmitted Infections Among US Women and Men: Prevalence and Incidence Estimates, 2018. Sexually Transmitted Diseases, 48(4), 208–214. https://doi.org/10.1097/OLQ.0000000000001355
Li, D., & Wu, M. (2021). Pattern recognition receptors in health and diseases. Signal Transduction and Targeted Therapy, 6(1), 291. https://doi.org/10.1038/s41392-021-00687-0
Lin, M., Wang, D., Chen, Y., Chen, G., Zhou, Y., Ou, J., & Xiao, L. (2025). PRR promotes hypertensive renal injury by activating Wnt/β-catenin signaling and inflammation infiltration in mice. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1871(1), 167517. https://doi.org/10.1016/j.bbadis.2024.167517
Marra, C. M., Sahi, S. K., Tantalo, L. C., Ho, E. L., Dunaway, S. B., Jones, T., & Hawn, T. R. (2014). Toll-like receptor polymorphisms are associated with increased neurosyphilis risk. Sexually Transmitted Diseases, 41(7), 440–446. https://doi.org/10.1097/OLQ.0000000000000149
Mayslich, C., Grange, P. A., Castela, M., Marcelin, A. G., Calvez, V., & Dupin, N. (2022). Characterization of a Cutibacterium acnes Camp Factor 1-Related Peptide as a New TLR-2 Modulator in In Vitro and Ex Vivo Models of Inflammation. International Journal of Molecular Sciences, 23(9), 5065. https://doi.org/10.3390/ijms23095065
Nwaobi, S., Ugoh, A. C., Iheme, B. C., Osadolor, A. O., & Walker, R. K. (2023). Through the Eyes: A Case of Ocular Syphilis. Cureus, 15(11), 1–4. https://doi.org/10.7759/cureus.48236
Patel, S. P., Petroni, G. R., Roszik, J., Olson, W. C., Wages, N. A., Chianese-Bullock, K. A., … Slingluff, C. L. (2021). Phase I/II trial of a long peptide vaccine (LPV7) plus toll-like receptor (TLR) agonists with or without incomplete Freund’s adjuvant (IFA) for resected high-risk melanoma. Journal for ImmunoTherapy of Cancer, 9(8), e003220. https://doi.org/10.1136/jitc-2021-003220
Tantalo, L. C., Lieberman, N. A. P., Pérez-Mañá, C., Suñer, C., Vall Mayans, M., Ubals, M., … Mitjà, O. (2023). Antimicrobial susceptibility of Treponema pallidum subspecies pallidum: an in-vitro study. The Lancet Microbe, 4(12), e994–e1004. https://doi.org/10.1016/S2666-5247(23)00219-7
Tiecco, G., Antoni, M. D., Storti, S., Marchese, V., Focà, E., Torti, C., … Quiros-Roldan, E. (2021, November 1). A 2021 update on syphilis: Taking stock from pathogenesis to vaccines. Pathogens, Vol. 10. MDPI. https://doi.org/10.3390/pathogens10111364
Wang, B.-G., Yi, D.-H., & Liu, Y.-F. (2015). TLR3 gene polymorphisms in cancer: a systematic review and meta-analysis. Chinese Journal of Cancer, 34(3), 19. https://doi.org/10.1186/s40880-015-0020-z
Yan, W., Yu, W., Shen, L., Xiao, L., Qi, J., & Hu, T. (2023). A SARS-CoV-2 nanoparticle vaccine based on chemical conjugation of loxoribine and SpyCatcher/SpyTag. International Journal of Biological Macromolecules, 253, 127159. https://doi.org/10.1016/j.ijbiomac.2023.127159
Zeng, X., Liu, X., & Bao, H. (2021). Sulforaphane suppresses lipopolysaccharide‐ and Pam3CysSerLys4‐mediated inflammation in chronic obstructive pulmonary disease via toll‐like receptors. FEBS Open Bio, 11(5), 1313–1321. https://doi.org/10.1002/2211-5463.13118