Pemberian Hormon Melatonin Tidak Menurunkan Kadar Gula Darah Puasa Tetapi Menurunkan Glycated Albumin Dan Meningkatkan Jumlah Sel Beta Pankreas Pada Tikus Jantan Wistar (Rattus Norvegicus) penderita Diabetes

Main Article Content

Emilia Kasturi Lukito

Abstract

ABSTRAK
Tujuan penelitian ini adalah untuk mengetahui peran melatonin dalam menurunkan gula darah, glycated albumin dan meningkatkan sel β pankreas pada tikus (rattus norvegicus) jantan Wistar diabetes. Penelitian ini adalah penelitian eksperimental dengan menggunakan completely randomized posttest only control group design yang dilakukan selama 15 hari, menggunakan 36 ekor tikus (Rattus norvegicus) jantan wistar dewasa umur 10-12 minggu, berat 180-200 gram yang dibagi dalam 2 kelompok masing-masing berjumlah 18 ekor, satu kelompok yang diberi plasebo aquabidest (P0) dan satu kelompok perlakukan yang diberi melatonin 10mg/kg BB (P1). Hasil penelitian menunjukkan bahwa tidak terdapat perbedaan rerata kadar gula darah puasa yang signifikan antara kelompok kontrol dan perlakuan (180 ± 28.1 mg/dl and 163.33 ± 27.23 mg/dl, p>0,05). Kadar glycated albumin pada kelompok kontrol adalah 43,92±15,1 ng/ml, lebih tinggi dibandingkan kelompok perlakuan yaitu 33,25±13,94 ng/ml (p<0,05). Jumlah sel β pankreas pada kelompok kontrol adalah 54,07±11,70 dan kelompok perlakuan adalah 91,66±12,82 (p<0,05). Simpulan: Disimpulkan bahwa pemberian melatonin tidak bermakna dalam penurunan gula darah puasa tetapi bermakna dalam penurunan glycated albumin dan peningkatan sel β pankreas. Melatonin perlu diteliti lebih lanjut pada manusia untuk penentuan efektivitas dan dosis yang sesuai pada manusia
Kata kunci: Melatonin, Diabetes Melitus, glukosa puasa, glycated albumin, sel β pankreas
ABSTRACT
The purpose of this study was to determine the role of melatonin to decrease the level of blood sugar, glycated albumin and improve pancreatic β cells of diabetic rat. This study was an experimental study using a completely randomized control group design, conducted over a period of 15 days, using 36 male wistar rats (Rattus norvegicus) of age 10-12 weeks, weight 180-200 grams divided into 2 groups, each consisting of 18 rats. The control group was given aquabidest placebo (P0), whereas the treatment group was given 10 mg / kg (P1) of melatonin. The results showed no significant difference in the average fasting blood glucose levels between the control and treatment groups (180 ± 28.1 mg/dl and 163.33 ± 27.23 mg/dl respectively, p> 0,05). Levels of glycated albumin in the control group were 43.92 ± 15.1 ng/ml and treatment group 33.25 ± 13.94 ng/ml (p<0,05). The number of pancreatic β cells in the control group was 54.07 ± 11.70 and the treatment group was 91.66 ± 12.82 (p<0.05). Conclusion: It was concluded that administration of melatonin was not significant in the reduction of fasting blood glucose however, it is significant in decreasing the level of glycated albumin and increasing the

number of pancreatic β cells. Melatonin needs to be further investigated in humans to determine
its effectiveness and appropriate dosage in humans.
Keywords: Melatonin, Diabetes Mellitus, fasting glucose, glycated albumin, pancreatic β cells

Article Details

How to Cite
Lukito, E. K. (2019). Pemberian Hormon Melatonin Tidak Menurunkan Kadar Gula Darah Puasa Tetapi Menurunkan Glycated Albumin Dan Meningkatkan Jumlah Sel Beta Pankreas Pada Tikus Jantan Wistar (Rattus Norvegicus) penderita Diabetes. Jurnal Media Sains, 3(1). https://doi.org/10.36002/jms.v3i1.696
Section
Articles

References

Bhat M, Kothiwale SK, Tirmale AR, Bhargava SY, Joshi BN. (2011). Antidiabetic Properties of Azardiracta indica and Bougainvillea spectabilis: In Vivo Studies in Murine Diabetes Model. Evid Based Complement Alternat Med. 2011:561625.

Butler, A.E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R. A., and Butler, P. C. (2012). β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes. 52(1):102-10

Federer, W. (2008). Statistic and society, Data collection and interpretation. Edisi ke-2. New York: Macel Dekker.

Garelnabi, M. O., Brown, W. V. and Le, N. A. (2008). Evaluation of a Novel Colorimetric Assay For Free Oxygen Radicals as Marker of Oxidative Stress. Clinical Biochemistry. 41 (14-15), 1250-1254.

Halliwell, B., and Gutteridge, J.M.C. (2007). Free Radicals in Biology and Medicine. Fourth Edition. New York. USA. Oxford University Press.

Han H-S, Kang G, Kim JS, Choi BH, Koo S-H. (2016). Regulation of glucose metabolism from a liver-centric perspective. Experimental & Molecular Medicine. 48(3):e218-.

Inarrea, P., Casanova, A., and Cadenas, E. (2012). Melatonin and Steroid Hormones Activate Intermembrane Cu,Zn Superoxide Dismutase by Means of Mitokondrial Cytochrom P450. Free Radicals in Biology and Medicine. 50(11): 1575-1581.

Koga, M. and Kasayama, M. (2010). Clinical impact of glycated albumin as another glycemic control marker. Endocrine Journal; 57(9): 751-762.

Martin, M.A., Fernandez-Millan, E., Ramos S., Bravo, L., and Goya, L. (2014). Cocoa flavonoid epicatechin protects pancreatic beta cell viability and function against oxidative stress. Mol Nutr Food Res. 58(3):447-56.

Mauriz, J. L., Collado, P. S., Veneroso, C. Reiter, R. J., and Gonzales-Gallego, J. (2012). A Review of the Molecular Aspects of Melatonin’s Anti-Inflammatory Actions: Recent Insights and New Perspectives. J Pineal Res. 54(1):1-14.

Mulder H, Nagorny CL, Lyssenko V, Groop L. (2009). Melatonin receptors in pancreatic islets: good morning to a novel type 2 diabetes gene. Diabetologia. 52(7):1240-9.

Nayak, S. K., T. Jegla, and S. Panda. (2007). Role of a Noel Photopigment, Melanopsin, in Behavioral Adaptation to light. Cell Mol Life Sci 64:144.

Perkeni. (2011). Konsensus Pengendalian dan Pencegahan Diabetes Mellitus Tipe 2 di Indonesia 2011. Available at: www.perkeni.org. Accessed 07/13/2017.

Peschke E, Bähr I, Mühlbauer E. (2013). Melatonin and pancreatic islets: interrelationships between melatonin, insulin and glucagon. Int J Mol Sci. 14(4):6981-7015.

Pham-Huy, L.A.P., He, H., and Pham-Huy, C. (2008). Free Radicals, Antioxidants in Disease and Health. International Journal of Biomedical Sciences, 4:89-96

Plummer MP, Finnis ME, Phillips LK, Kar P, Bihari S, Biradar V, Moodie S, Horowitz M, Shaw JE, Deane AM. 2016. Stress Induced Hyperglycemia and the Subsequent Risk of Type 2 Diabetes in Survivors of Critical Illness. PLoS One. 11(11):e0165923.

Pu, L.J., Lu, L., Shen, W.F., Zhang, Q., Zhang, R.Y., Zhang, J.S. (2007). Increased serum glycated albumin level is associatedwith the presence and severity of coronary artery disease in type 2 diabetic patients. Circ J. 71: 1067-1073.

Sharma, S., Singh, H., Ahmad, N., Mishra, P., and Tiwari, A. (2015). The role of melatonin in diabetes: therapeutic implications. Arch Endrocrinol Metab. p. 391-399

Song, M.Y., Song, S.O., Young, H.Y., Kun, H.Y., Kang, E.S., Cha, B.S., Lee, H.C., Kim, J.W., and Byung-Wan Lee. (2013). Glycated Albumin Causes Pancreatic β-Cells Dysfunction Through Autophagy Dysfunction. Endocrinology. p: 2626 –2639.

Suarsana, I. N., Priosoeryanto, B., Bintang, M., Wresdiyati, T. (2010). Profil Glukosa Darah dan Ultrastruktur Sel Beta Pankreas Tikus yang Diinduksi Senyawa Aloksan. JITV, 15(2): 118-123.

Szkudelski, T. (2012). Streptozotocin-Nicotinamide Induced Diabetes in Rat. Characteristics of the Experimental Model. Experimental Biology and Medicine. 237: 481-490.

Tan, D. X., Manchester LC, Terron MP, Flores LJ, and Reiter RJ. (2007). One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and reactive-netrogen species? Journal of pineal research, 2007b; 42: 28-42.

Tandra, H. (2014). Stategi Mengalahkan Komplikasi Diabetes. Jakarta: Penerbit PT Gramedia

Yount, W. R. (2006). Research Design and Statistical Analysis in Christian Ministry 4th Edition. USA. Unit 13: 1-11.

Zawilska, J. B., Skene, D. J., and Arendt, J. (2009). Physiology and Pharmacology of Melatonin in Relation to Biological Rhytms. Pharmalogical Reports, 61(3): 383-410.