OPINI PUBLIK TERHADAP ISU KEASLIAN IJAZAH PADA PLATFORM YOUTUBE DENGAN NAÏVE BAYES, KNN, DAN SMOTE

Authors

  • Agnes Anastasia Putri Universitas Multi Data Palembang
  • Christian Bautista Universitas Multi Data Palembang
  • Hafiz Irsyad Universitas Multi Data Palembang
  • Abdul Rahman Universitas Multi Data Palembang

DOI:

https://doi.org/10.36002/jutik.v11i2.3892

Keywords:

Digital Opinion, KNN, Naïve Bayes, Sentiment Classification, SMOTE

Abstract

In the digital era, public opinion spreads massively and instantly through various social media platforms. One issue that has sparked widespread attention and debate in the digital space is regarding the authenticity of President Joko Widodo's diploma. This issue has provoked various reactions, both support, criticism, and neutral attitudes from netizens, especially through the comments column on YouTube. This study analyzes public sentiment towards the issue using a machine learning approach with the Naïve Bayes and K-Nearest Neighbors (KNN) algorithms, as well as the SMOTE data balancing technique. A total of 1,000 comments were analyzed and classified into three sentiment categories, namely positive, negative, and neutral. Four test scenarios were carried out, namely: KNN, KNN with SMOTE, Naïve Bayes, and Naïve Bayes with SMOTE with a performance comparison tested to see the effectiveness of each in classifying digital opinion. The test results showed that the combination of Naïve Bayes and SMOTE provided the best performance with accuracy, precision, recall, and F1-score of 73%. In contrast, the worst performing model is KNN with SMOTE, which only achieves 27% accuracy, 53% precision, 34% recall, and 15% F1-score. This study emphasizes the importance of algorithm selection and data handling strategies in digital opinion classification, and can be the basis for developing a reliable sentiment analysis system in the future.

References

[1] F. S. Pratiwi, “Peran Komunikasi Digital dalam Pembentukan Opini Publik : Studi Kasus Media Sosial,” pp. 293–315, 2024, doi: 10.30589/proceedings.2024.1059

[2] D. Al Mustaqim, F. Abdul Hakim, H. Atfalina, and A. Fatakh, “Peran Media Sosial Sebagai Sarana Partisipasi Warganet Dalam Mewujudukan Keadilan dan Akuntabilitas Penegakan Hukum di Indonesia,” J. Multidiscip. Res. Dev., vol. 1, no. 1, pp. 53–66, 2024, doi: 10.56916/jmrd.v1i1.655

[3] Aulia A S, M. Rezani Alwi, Subandi, and Muhammad R H, “Analisis Sentimen Data Twitter Terhadap Pelaksanaan Pembelajaran Online Di Indonesia Pada Masa Pandemi Covid-19 Menggunakan Metode Natural Language Processing,” Jursistekni , vol. 5, no. 3, pp. 319–331, 2023, doi: 10.52005/jursistekni.v5i3.205

[4] A. A. Santoso, “Penetapan Ganjar Pranowo Sebagai Calon Presiden: Studi Analisis Topik pada Reverse Agenda Setting Terkait Kasus Ganjar Pranowo,” JIIP - J. Ilm. Ilmu Pendidik., vol. 7, no. 4, pp. 3805–3812, 2024, doi: 10.54371/jiip.v7i4.4140

[5] N. Alfriyanto, B. C. Purnama, and F. K. Hasanah, “Analisis Emosi Terhadap Komentar Video Youtube ‘ Penyebab Kegagalan Adopsi Sistem Pendidikan Finlandia di Indonesia ’ Menggunakan Metode Random Forest,” pp. 812–827, 2024. Diperoleh dari https://centive.ittelkom-pwt.ac.id/index.php/centive/article/view/409

[6] N. M. Putry, “Komparasi Algoritma Knn Dan Naïve Bayes Untuk Klasifikasi Diagnosis Penyakit Diabetes Mellitus,” EVOLUSI J. Sains dan Manaj., vol. 10, no. 1, 2022, doi: 10.31294/evolusi.v10i1.12514

[7] F. Destiyanti, A. I. Hadiana, and F. R. Umbara, “Penerapan Metode Support Vector Machine dan SMOTE untuk Klasifikasi Sentimen Publik Terhadap Polisi Republik Indonesia,” vol. 8, no. 1, pp. 1–15, 2024, doi: 10.26874/jumanji.v8i1.336

[8] A. K. S, H. Hs, and Z. F. K, “Media 2024 Analisis Sentimen Masyarakat Terhadap Pelantikan Kabinet Merah Putih Pada Media Sosial Menggunakan Algoritma Naive Bayes,” pp. 1080–1089, 2024. Diperoleh dari https://centive.ittelkom-pwt.ac.id/index.php/centive/article/view/383

[9] A. K. Wardhani et al., “Optimasi Nilai K Pada Algortima K-Nearest,” vol. 5, no. 1, pp. 44–51, 2025, doi: 10.54840/jcstech.v5i1.360

[10] I Gusti Ngurah Ady Kusuma, I Made Pradipta, I Made Ari Santosa, and I Komang Dharmendra, “Penanganan Ketidakseimbangan Data Pada Klasifikasi Pengaduan Masyarakat,” J. Teknol. Inf. dan Komput., vol. 9, no. 5, pp. 489–496, 2023, doi: 10.36002/jutik.v9i5.2643

[11] M. Azhari, “Analisis Sentimen Opini Publik Program Makan Siang Gratis dengan Random Forest Pada Media X,” vol. 6, no. 3, pp. 1932–1942, 2024, doi: 10.47065/bits.v6i3.6423

[12] O. INews, “UGM Klaim Ijazah Jokowi Asli, Roy Suryo: UGM Bohong! | Rakyat Bersuara | 29/04.”

[13] Apify, "Web Scraper," Apify Documentation, [Online]. Available: https://apify.com/streamers/youtube-scraper [Accessed: May 8, 2025].

[14] Masdevid, "ID-OpinionWords," GitHub, [Online]. Available: https://github.com/masdevid/ID-OpinionWords [Accessed: May 8, 2025].

[15] P. S. Zalukhu, T. Handhayani, and M. Sitorus, “Analisis Sentimen Terhadap Kenaikan Bbm Di Indonesia Pada Media Sosial Twitter Menggunakan Metode Naïve Bayes,” Simtek J. Sist. Inf. dan Tek. Komput., vol. 8, no. 1, pp. 65–69, 2023, doi: 10.51876/simtek.v8i1.177

[16] Subkhi Mahmasani, “View metadata, citation and similar papers at core.ac.uk,” vol. 8, no. 1, pp. 274–282, 2020. Diperoleh dari https://core.ac.uk/reader/212014220

[17] A. D. Adhi Putra, “Sentiment Analysis on User Reviews of the Bibit and Bareksa Application with the KNN Algorithm,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 2, pp. 636–646, 2021, doi: 10.35957/jatisi.v8i2.962

[18] R. Sari, “Analisis Sentimen Pada Review Objek Wisata Dunia Fantasi Menggunakan Algoritma K-Nearest Neighbor (K-Nn),” EVOLUSI J. Sains dan Manaj., vol. 8, no. 1, pp. 10–17, 2020, doi: 10.31294/evolusi.v8i1.7371

[19] M. Maulidah, Windu Gata, Rizki Aulianita, and Cucu Ika Agustyaningrum, “Algoritma Klasifikasi Decision Tree Untuk Rekomendasi Buku Berdasarkan Kategori Buku,” E-Bisnis J. Ilm. Ekon. dan Bisnis, vol. 13, no. 2, pp. 89–96, 2020, doi: 10.51903/e-bisnis.v13i2.251

Downloads

Published

2025-10-10

How to Cite

Agnes Anastasia Putri, Christian Bautista, Hafiz Irsyad, & Abdul Rahman. (2025). OPINI PUBLIK TERHADAP ISU KEASLIAN IJAZAH PADA PLATFORM YOUTUBE DENGAN NAÏVE BAYES, KNN, DAN SMOTE. Jurnal Teknologi Informasi Dan Komputer, 11(2), 231–242. https://doi.org/10.36002/jutik.v11i2.3892

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.